Your browser doesn't support javascript.
loading
Replicative Senescence-Associated LINE1 Methylation and LINE1-Alu Expression Levels in Human Endothelial Cells.
Ramini, Deborah; Latini, Silvia; Giuliani, Angelica; Matacchione, Giulia; Sabbatinelli, Jacopo; Mensà, Emanuela; Bacalini, Maria Giulia; Garagnani, Paolo; Rippo, Maria Rita; Bronte, Giuseppe; Bonafè, Massimiliano; Cardelli, Maurizio; Olivieri, Fabiola.
Affiliation
  • Ramini D; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, 60121 Ancona, Italy.
  • Latini S; Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy.
  • Giuliani A; Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy.
  • Matacchione G; Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy.
  • Sabbatinelli J; Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy.
  • Mensà E; Laboratory Medicine Unit, Azienda Ospedaliero Universitaria delle Marche, 60126 Ancona, Italy.
  • Bacalini MG; Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy.
  • Garagnani P; IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy.
  • Rippo MR; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy.
  • Bronte G; Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, 40126 Bologna, Italy.
  • Bonafè M; CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza"-Unit of Bologna, 40126 Bologna, Italy.
  • Cardelli M; Department of Laboratory Medicine, Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, 141 86 Huddinge, Sweden.
  • Olivieri F; Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy.
Cells ; 11(23)2022 Nov 27.
Article in En | MEDLINE | ID: mdl-36497059
ABSTRACT
One of the main challenges of current research on aging is to identify the complex epigenetic mechanisms involved in the acquisition of the cellular senescent phenotype. Despite some evidence suggested that epigenetic changes of DNA repetitive elements, including transposable elements (TE) sequences, are associated with replicative senescence of fibroblasts, data on different types of cells are scarce. We previously analysed genome-wide DNA methylation of young and replicative senescent human endothelial cells (HUVECs), highlighting increased levels of demethylated sequences in senescent cells. Here, we aligned the most significantly demethylated single CpG sites to the reference genome and annotated their localization inside TE sequences and found a significant hypomethylation of sequences belonging to the Long-Interspersed Element-1 (LINE-1 or L1) subfamilies L1M, L1P, and L1HS. To verify the hypothesis that L1 demethylation could be associated with increased transcription/activation of L1s and/or Alu elements (non-autonomous retroelements that usually depend on L1 sequences for reverse transcription and retrotransposition), we quantified the RNA expression levels of both L1 (generic L1 elements or site-specific L1PA2 on chromosome 14) and Alu elements in young and senescent HUVECs and human dermal fibroblasts (NHDFs). The RNA expression of Alu and L1 sequences was significantly increased in both senescent HUVECs and NHDFs, whereas the RNA transcript of L1PA2 on chromosome 14 was not significantly modulated in senescent cells. Moreover, we found an increased amount of TE DNA copies in the cytoplasm of senescent HUVECs and NHDFs. Our results support the hypothesis that TE, which are significantly increased in senescent cells, could be retrotranscribed to DNA sequences.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Alu Elements / Endothelial Cells Type of study: Risk_factors_studies Limits: Humans Language: En Journal: Cells Year: 2022 Type: Article Affiliation country: Italy

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Alu Elements / Endothelial Cells Type of study: Risk_factors_studies Limits: Humans Language: En Journal: Cells Year: 2022 Type: Article Affiliation country: Italy