Your browser doesn't support javascript.
loading
Conformation-dependent dynamic organic phosphorescence through thermal energy driven molecular rotations.
Wei, Juan; Liu, Chenyuan; Duan, Jiayu; Shao, Aiwen; Li, Jinlu; Li, Jiangang; Gu, Wenjie; Li, Zixian; Liu, Shujuan; Ma, Yun; Huang, Wei; Zhao, Qiang.
Affiliation
  • Wei J; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
  • Liu C; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
  • Duan J; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
  • Shao A; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
  • Li J; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
  • Li J; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
  • Gu W; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
  • Li Z; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
  • Liu S; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
  • Ma Y; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
  • Huang W; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
  • Zhao Q; Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLFE), Northwestern Polytechnical University, Xi'an, 710072, P.R. China. iamwhuang@njtech.edu.cn.
Nat Commun ; 14(1): 627, 2023 Feb 06.
Article in En | MEDLINE | ID: mdl-36746937
ABSTRACT
Organic room-temperature phosphorescent (RTP) materials exhibiting reversible changes in optical properties upon exposure to external stimuli have shown great potential in diverse optoelectronic fields. Particularly, dynamic manipulation of response behaviors for such materials is of fundamental significance, but it remains a formidable challenge. Herein, a series of RTP polymers were prepared by incorporating phosphorescent rotors into polymer backbone, and these materials show color-tunable persistent luminescence upon excitation at different wavelengths. Experimental results and theoretical calculations revealed that the various molecular conformations of monomers are responsible for the excitation wavelength-dependent (Ex-De) RTP behavior. Impressively, after gaining insights into the underlying mechanism, dynamic control of Ex-De RTP behavior was achieved through thermal energy driven molecular rotations of monomers. Eventually, we demonstrate the practical applications of these amorphous polymers in anti-counterfeiting areas. These findings open new opportunities for the control of response behaviors of smart-responsive RTP materials through external stimuli rather than conventional covalent modification method.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2023 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2023 Type: Article