Your browser doesn't support javascript.
loading
Deletion of DP148R, DP71L, and DP96R Attenuates African Swine Fever Virus, and the Mutant Strain Confers Complete Protection against Homologous Challenges in Pigs.
Qi, Xiaolan; Feng, Tao; Ma, Zhao; Zheng, Linlin; Liu, Huanan; Shi, Zhengwang; Shen, Chaochao; Li, Pan; Wu, Panxue; Ru, Yi; Li, Dan; Zhu, Zixiang; Tian, Hong; Wu, Sen; Zheng, Haixue.
Affiliation
  • Qi X; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  • Feng T; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  • Ma Z; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
  • Zheng L; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  • Liu H; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  • Shi Z; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  • Shen C; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  • Li P; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
  • Wu P; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
  • Ru Y; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  • Li D; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  • Zhu Z; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  • Tian H; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
  • Wu S; State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
  • Zheng H; State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
J Virol ; 97(4): e0024723, 2023 04 27.
Article in En | MEDLINE | ID: mdl-37017515
ABSTRACT
The African swine fever virus (ASFV) has caused a devastating pandemic in domestic and wild swine, causing economic losses to the global swine industry. Recombinant live attenuated vaccines are an attractive option for ASFV treatment. However, safe and effective vaccines against ASFV are still scarce, and more high-quality experimental vaccine strains need to be developed. In this study, we revealed that deletion of the ASFV genes DP148R, DP71L, and DP96R from the highly virulent isolate ASFV CN/GS/2018 (ASFV-GS) substantially attenuated virulence in swine. Pigs infected with 104 50% hemadsorbing doses of the virus with these gene deletions remained healthy during the 19-day observation period. No ASFV infection was detected in contact pigs under the experimental conditions. Importantly, the inoculated pigs were protected against homologous challenges. Additionally, RNA sequence analysis showed that deletion of these viral genes induced significant upregulation of the host histone H3.1 gene (H3.1) and downregulation of the ASFV MGF110-7L gene. Knocking down the expression of H3.1 resulted in high levels of ASFV replication in primary porcine macrophages in vitro. These findings indicate that the deletion mutant virus ASFV-GS-Δ18R/NL/UK is a novel potential live attenuated vaccine candidate and one of the few experimental vaccine strains reported to induce full protection against the highly virulent ASFV-GS virus strain. IMPORTANCE Ongoing outbreaks of African swine fever (ASF) have considerably damaged the pig industry in affected countries. Thus, a safe and effective vaccine is important to control African swine fever spread. Here, an ASFV strain with three gene deletions was developed by knocking out the viral genes DP148R (MGF360-18R), NL (DP71L), and UK (DP96R). The results showed that the recombinant virus was completely attenuated in pigs and provided strong protection against parental virus challenge. Additionally, no viral genomes were detected in the sera of pigs housed with animals infected with the deletion mutant. Furthermore, transcriptome sequencing (RNA-seq) analysis revealed significant upregulation of histone H3.1 in virus-infected macrophage cultures and downregulation of the ASFV MGF110-7L gene after viral DP148R, UK, and NL deletion. Our study provides a valuable live attenuated vaccine candidate and potential gene targets for developing strategies for anti-ASFV treatment.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Viral Vaccines / Gene Deletion / African Swine Fever / African Swine Fever Virus / Virulence Factors / Genes, Viral Limits: Animals Language: En Journal: J Virol Year: 2023 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Viral Vaccines / Gene Deletion / African Swine Fever / African Swine Fever Virus / Virulence Factors / Genes, Viral Limits: Animals Language: En Journal: J Virol Year: 2023 Type: Article Affiliation country: China