Your browser doesn't support javascript.
loading
Advanced In Situ Electrochemical Induced Dual-Mechanism Heterointerface toward High-Energy Aqueous Zinc-Ion Batteries.
Wang, Qiufan; Tian, Guofu; Huang, Can; Zhang, Daohong.
Affiliation
  • Wang Q; Key laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China.
  • Tian G; Key laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China.
  • Huang C; Key laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China.
  • Zhang D; Key laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China.
Small ; 19(32): e2301189, 2023 Aug.
Article in En | MEDLINE | ID: mdl-37069774

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2023 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2023 Type: Article Affiliation country: China