Synthesis and Reactivity of a Cobalt-Supported Singlet Nitrene.
J Am Chem Soc
; 145(25): 13650-13662, 2023 Jun 28.
Article
in En
| MEDLINE
| ID: mdl-37310290
The synthesis, characterization, and reactivity of a series of cobalt terminal imido complexes supported by an N-anchored tripodal tris(carbene) chelate is described, including a Co-supported singlet nitrene. Reaction of the CoI precursor [(TIMMNmes)CoI](PF6) (TIMMNmes = tris-[2-(3-mesityl-imidazolin-2-ylidene)-methyl]amine) with p-methoxyphenyl azide yields a CoIII imide [(TIMMNmes)CoIII(NAnisole)](PF6) (1). Treatment of 1 with 1 equiv of [FeCp2](PF6) at -35 °C affords a formal CoIV imido complex [(TIMMNmes)Co(NAnisole)](PF6)2 (2), which features a bent Co-N(imido)-C(Anisole) linkage. Subsequent one-electron oxidation of 2 with 1 equiv of AgPF6 provides access to the tricationic cobalt imido complex [(TIMMNmes)Co(NAnisole)](PF6)3 (3). All complexes were fully characterized, including single-crystal X-ray diffraction (SC-XRD) analyses, infrared (IR) vibrational, ultraviolet/visible (UV/vis) electronic absorption, multinuclear NMR, X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and high-energy-resolution fluorescence-detected X-ray absorption spectroscopy (HERFD XAS). Quantum chemical calculations provide additional insight into the electronic structures of all compounds. The dicationic CoIV imido complex 2 exhibits a doublet ground state with considerable imidyl character as a result of covalent Co-NAnisole bonding. At room temperature, 2 readily converts to a CoII amine complex involving intramolecular C-H bond amination. Electronically, tricationic complex 3 can be understood as a singlet nitrene bound to CoIII with significant CoIV imidyl radical character. Verifying the pronounced electrophilicity, nucleophiles such as H2O and tBuNH2 add to 3âanalogous to the parent free nitreneâin the para position of the aromatic substituent, thus, clearly corroborating singlet nitrene-type reactivity.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
J Am Chem Soc
Year:
2023
Type:
Article
Affiliation country:
Germany