Molecular simulations of sliding on SDS surfactant films.
J Chem Phys
; 158(24)2023 Jun 28.
Article
in En
| MEDLINE
| ID: mdl-37377159
We use molecular dynamics simulations to study the frictional response of monolayers of the anionic surfactant sodium dodecyl sulfate and hemicylindrical aggregates physisorbed on gold. Our simulations of a sliding spherical asperity reveal the following two friction regimes: at low loads, the films show Amonton's friction with a friction force that rises linearly with normal load, and at high loads, the friction force is independent of the load as long as no direct solid-solid contact occurs. The transition between these two regimes happens when a single molecular layer is confined in the gap between the sliding bodies. The friction force at high loads on a monolayer rises monotonically with film density and drops slightly with the transition to hemicylindrical aggregates. This monotonous increase of friction force is compatible with a traditional plowing model of sliding friction. At low loads, the friction coefficient reaches a minimum at the intermediate surface concentrations. We attribute this behavior to a competition between adhesive forces, repulsion of the compressed film, and the onset of plowing.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
J Chem Phys
Year:
2023
Type:
Article
Affiliation country:
Germany