Contracted Fe-N5-C11 Sites in Single-Atom Catalysts Boosting Catalytic Performance for Oxygen Reduction Reaction.
ACS Appl Mater Interfaces
; 15(27): 32341-32351, 2023 Jul 12.
Article
in En
| MEDLINE
| ID: mdl-37379231
Promoting the catalyst performance for oxygen reduction reaction (ORR) in energy conversion devices through controlled manipulation of the structure of catalytic active sites has been a major challenge. In this work, we prepared Fe-N-C single-atom catalysts (SACs) with Fe-N5 active sites and found that the catalytic activity of the catalyst with shrinkable Fe-N5-C11 sites for ORR was significantly improved compared with the catalyst bearing normal Fe-N5-C12 sites. The catalyst C@PVI-(TPC)Fe-800, prepared by pyrolyzing an axial-imidazole-coordinated iron corrole precursor, exhibited positive shifted half-wave potential (E1/2 = 0.89 V vs RHE) and higher peak power density (Pmax = 129 mW/cm2) than the iron porphyrin-derived counterpart C@PVI-(TPP)Fe-800 (E1/2 = 0.81 V, Pmax = 110 mW/cm2) in 0.1 M KOH electrolyte and Zn-air batteries, respectively. X-ray absorption spectroscopy (XAS) analysis of C@PVI-(TPC)Fe-800 revealed a contracted Fe-N5-C11 structure with iron in a higher oxidation state than the porphyrin-derived Fe-N5-C12 counterpart. Density functional theory (DFT) calculations demonstrated that C@PVI-(TPC)Fe-800 possesses a higher HOMO energy level than C@PVI-(TPP)Fe-800, which can increase its electron-donating ability and thus help achieve enhanced O2 adsorption as well as O-O bond activation. This work provides a new approach to tune the active site structure of SACs with unique contracted Fe-N5-C11 sites that remarkably promote the catalyst performance, suggesting significant implications for catalyst design in energy conversion devices.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
ACS Appl Mater Interfaces
Journal subject:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Year:
2023
Type:
Article