Your browser doesn't support javascript.
loading
The Thoracic Research Evaluation and Treatment 2.0 Model: A Lung Cancer Prediction Model for Indeterminate Nodules Referred for Specialist Evaluation.
Godfrey, Caroline M; Shipe, Maren E; Welty, Valerie F; Maiga, Amelia W; Aldrich, Melinda C; Montgomery, Chandler; Crockett, Jerod; Vaszar, Laszlo T; Regis, Shawn; Isbell, James M; Rickman, Otis B; Pinkerman, Rhonda; Lambright, Eric S; Nesbitt, Jonathan C; Maldonado, Fabien; Blume, Jeffrey D; Deppen, Stephen A; Grogan, Eric L.
Affiliation
  • Godfrey CM; Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN.
  • Shipe ME; Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN.
  • Welty VF; Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN.
  • Maiga AW; Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN; Division of Thoracic Surgery, Veterans Hospital, Tennessee Valley Healthcare System, Nashville, TN.
  • Aldrich MC; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.
  • Montgomery C; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.
  • Crockett J; Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN.
  • Vaszar LT; Department of Pulmonary Medicine, Mayo Clinic, Phoenix, AZ.
  • Regis S; Department of Radiation Oncology, Lahey Hospital and Medical Center, Burlington, MA.
  • Isbell JM; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY.
  • Rickman OB; Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN.
  • Pinkerman R; Division of Thoracic Surgery, Veterans Hospital, Tennessee Valley Healthcare System, Nashville, TN.
  • Lambright ES; Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN.
  • Nesbitt JC; Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN; Division of Thoracic Surgery, Veterans Hospital, Tennessee Valley Healthcare System, Nashville, TN.
  • Maldonado F; Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN.
  • Blume JD; School of Data Science, University of Virginia, Charlottesville, VA.
  • Deppen SA; Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN.
  • Grogan EL; Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN; Division of Thoracic Surgery, Veterans Hospital, Tennessee Valley Healthcare System, Nashville, TN. Electronic address: eric.grogan@VUMC.org.
Chest ; 164(5): 1305-1314, 2023 11.
Article in En | MEDLINE | ID: mdl-37421973
BACKGROUND: Appropriate risk stratification of indeterminate pulmonary nodules (IPNs) is necessary to direct diagnostic evaluation. Currently available models were developed in populations with lower cancer prevalence than that seen in thoracic surgery and pulmonology clinics and usually do not allow for missing data. We updated and expanded the Thoracic Research Evaluation and Treatment (TREAT) model into a more generalized, robust approach for lung cancer prediction in patients referred for specialty evaluation. RESEARCH QUESTION: Can clinic-level differences in nodule evaluation be incorporated to improve lung cancer prediction accuracy in patients seeking immediate specialty evaluation compared with currently available models? STUDY DESIGN AND METHODS: Clinical and radiographic data on patients with IPNs from six sites (N = 1,401) were collected retrospectively and divided into groups by clinical setting: pulmonary nodule clinic (n = 374; cancer prevalence, 42%), outpatient thoracic surgery clinic (n = 553; cancer prevalence, 73%), or inpatient surgical resection (n = 474; cancer prevalence, 90%). A new prediction model was developed using a missing data-driven pattern submodel approach. Discrimination and calibration were estimated with cross-validation and were compared with the original TREAT, Mayo Clinic, Herder, and Brock models. Reclassification was assessed with bias-corrected clinical net reclassification index and reclassification plots. RESULTS: Two-thirds of patients had missing data; nodule growth and fluorodeoxyglucose-PET scan avidity were missing most frequently. The TREAT version 2.0 mean area under the receiver operating characteristic curve across missingness patterns was 0.85 compared with that of the original TREAT (0.80), Herder (0.73), Mayo Clinic (0.72), and Brock (0.68) models with improved calibration. The bias-corrected clinical net reclassification index was 0.23. INTERPRETATION: The TREAT 2.0 model is more accurate and better calibrated for predicting lung cancer in high-risk IPNs than the Mayo, Herder, or Brock models. Nodule calculators such as TREAT 2.0 that account for varied lung cancer prevalence and that consider missing data may provide more accurate risk stratification for patients seeking evaluation at specialty nodule evaluation clinics.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Solitary Pulmonary Nodule / Multiple Pulmonary Nodules / Lung Neoplasms Type of study: Prognostic_studies / Risk_factors_studies Limits: Humans Language: En Journal: Chest Year: 2023 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Solitary Pulmonary Nodule / Multiple Pulmonary Nodules / Lung Neoplasms Type of study: Prognostic_studies / Risk_factors_studies Limits: Humans Language: En Journal: Chest Year: 2023 Type: Article