Tuning Binding Strength of Multiple Intermediates towards Efficient pH-universal Electrocatalytic Hydrogen Evolution by Mo8 O26 -NbNx Oy Heterocatalysts.
Angew Chem Int Ed Engl
; 62(46): e202306896, 2023 Nov 13.
Article
in En
| MEDLINE
| ID: mdl-37747767
Developing efficient and robust hydrogen evolution reaction (HER) catalysts for scalable and sustainable hydrogen production through electrochemical water splitting is strategic and challenging. Herein, heterogeneous Mo8 O26 -NbNx Oy supported on N-doped graphene (defined as Mo8 O26 -NbNx Oy /NG) is synthesized by controllable hydrothermal reaction and nitridation process. The O-exposed Mo8 O26 clusters covalently confined on NbNx Oy nanodomains provide a distinctive interface configuration and appropriate electronic structure, where fully exposed multiple active sites give excellent HER performance beyond commercial Pt/C catalyst in pH-universal electrolytes. Theoretical studies reveal that the Mo8 O26 -NbNx Oy interface with electronic reconstruction affords near-optimal hydrogen adsorption energy and enhanced initial H2 O adsorption. Furthermore, the terminal O atoms in Mo8 O26 clusters cooperate with Nb atoms to promote the initial H2 O adsorption, and subsequently reduce the H2 O dissociation energy, accelerating the entire HER kinetics.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Angew Chem Int Ed Engl
Year:
2023
Type:
Article
Affiliation country:
China