Mechanism of interaction between ascorbic acid and soil iron-containing minerals for peroxydisulfate activation and organophosphorus flame retardant degradation.
Environ Res
; 244: 117883, 2024 Mar 01.
Article
in En
| MEDLINE
| ID: mdl-38072104
Soil constituents may play an important role in peroxydisulfate (PDS)-based oxidation of organic contaminants in soil. Iron-containing minerals (Fe-minerals) have been found to promote PDS activation for organics degradation. Our study found that ascorbic acid (H2A) could enhance PDS activation by soil Fe-minerals for triphenyl phosphate (TPHP) degradation. Determination and characterization analyses of Fe fractions showed that H2A could induce the reductive dissolution of solid Fe-minerals and the increasing of oxygen vacancies/hydroxyl groups content on Fe-minerals surface. The increasing of divalent Fe (Fe(II)) accelerated PDS activation to generate reactive oxygen species (ROS). Electron paramagnetic resonance (EPR) and quenching studies showed that sulfate radicals (SO4â¢-) and hydroxyl radicals (HOâ¢) contributed significantly to TPHP degradation. The composition and content of Fe-minerals and soil organic matter (SOM) markedly influenced ROS transformations. Surface-bond and structural Fe played the main role in the production of Fe(II) in reaction system. The high-concentration SOM could result in ROS consumption and degradation inhibition. Density functional theory (DFT) studies revealed that H2A is preferentially adsorbed at α-Fe2O3(012) surface through Fe-O-C bridges rather than hydrogen bonds. After absorption, H atoms on H2A may further be migrated to adjacent O atoms on the α-Fe2O3(012) surface. With the transformation of H atoms to the α-Fe2O3(012) surface, the Fe-O-C bridge is broken and one electron is transferred from the O to Fe atom, inducing the reduction of trivalent Fe (Fe(III)) atom. MS/MS2 analysis, HPLC analysis, and toxicity assessment demonstrated that TPHP was transformed to less toxic 4-hydroxyphenyl diphenyl phosphate (OH-TPHP), diphenyl hydrogen phosphate (DPHP), and phenyl phosphate (PHP) through phenol-cleavage and hydroxylation processes, and even be mineralized in reaction system.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Biphenyl Compounds
/
Flame Retardants
/
Iron
Language:
En
Journal:
Environ Res
Year:
2024
Type:
Article
Affiliation country:
China