Your browser doesn't support javascript.
loading
Covalent Organic Framework Ionomer Steering the CO2 Electroreduction Pathway on Cu at Industrial-Grade Current Density.
Zhu, Zhejiaji; Zhu, Yuhao; Ren, Zhixin; Liu, Di; Yue, Feiyu; Sheng, Dafei; Shao, Pengpeng; Huang, Xiuying; Feng, Xiao; Yin, An-Xiang; Xie, Jing; Wang, Bo.
Affiliation
  • Zhu Z; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute
  • Zhu Y; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute
  • Ren Z; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute
  • Liu D; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute
  • Yue F; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute
  • Sheng D; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute
  • Shao P; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute
  • Huang X; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute
  • Feng X; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute
  • Yin AX; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute
  • Xie J; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute
  • Wang B; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute
J Am Chem Soc ; 146(2): 1572-1579, 2024 Jan 17.
Article in En | MEDLINE | ID: mdl-38170986
ABSTRACT
CO2 electroreduction holds great promise for addressing global energy and sustainability challenges. Copper (Cu) shows great potential for effective conversion of CO2 toward specific value-added and/or high-energy-density products. However, its limitation lies in relatively low product selectivity. Herein, we present that the CO2 reduction reaction (CO2RR) pathway on commercially available Cu can be rationally steered by modulating the microenvironment in the vicinity of the Cu surface with two-dimensional sulfonated covalent organic framework nanosheet (COF-NS)-based ionomers. Specifically, the selectivity toward methane (CH4) can be enhanced to more than 60% with the total current density up to 500 mA cm-2 in flow cells in both acidic (pH = 2) and alkaline (pH = 14) electrolytes. The COF-NS, characterized by abundant apertures, can promote the accumulation of CO2 and K+ near the catalyst surface, alter the adsorption energy and surface coverage of *CO, facilitate the dissociation of H2O, and finally modulate the reaction pathway for the CO2RR. Our approach demonstrates the rational modulation of reaction interfaces for the CO2RR utilizing porous open framework ionomers, showcasing their potential practical applications.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Am Chem Soc Year: 2024 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Am Chem Soc Year: 2024 Type: Article