Your browser doesn't support javascript.
loading
Hydrogen-Bonded Thiol Undergoes Unconventional Excited-State Intramolecular Proton-Transfer Reactions.
Wang, Jian-Kai; Wang, Chih-Hsing; Wu, Chi-Chi; Chang, Kai-Hsin; Wang, Chun-Hsiang; Liu, Yi-Hung; Chen, Chao-Tsen; Chou, Pi-Tai.
Affiliation
  • Wang JK; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
  • Wang CH; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
  • Wu CC; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
  • Chang KH; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
  • Wang CH; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
  • Liu YH; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
  • Chen CT; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
  • Chou PT; Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
J Am Chem Soc ; 146(5): 3125-3135, 2024 Feb 07.
Article in En | MEDLINE | ID: mdl-38288596
ABSTRACT
The chapter on the thiol-related hydrogen bond (H-bond) and its excited-state intramolecular proton-transfer (ESIPT) reaction was recently opened where compound 4'-diethylamino-3-mercaptoflavone (3NTF) undergoes ESIPT in both cyclohexane solution and solid, giving a 710 nm tautomer emission with an anomalously large Stokes shift of 12,230 cm-1. Considering the thiol H-bond to be unconventional compared to the conventional Pauling-type -OH or -NH H-bond, it is thus essential and timely to probe its fundamental difference between their ESIPT. However, thiol-associated ESIPT tends to be nonemissive due to the dominant nπ* character of the tautomeric lowest excited state. Herein, based on the 3-mercaptoflavone scaffold and π-elongation concept, a new series of 4'-substituted-7-diethylamino-3-mercaptoflavones, NTFs, was designed and synthesized with varied H-bond strength and 690-720 nm tautomeric emission upon ultraviolet (UV) excitation in cyclohexane. The order of their H-bonding strength was experimentally determined to be N-NTF < O-NTF < H-NTF < F-NTF, while the rate of -SH ESIPT measured by fluorescence upconversion was F-NTF (398 fs)-1 < H-NTF (232 fs)-1 < O-NTF (123 fs)-1 < N-NTF (101 fs)-1 in toluene. Unexpectedly, the strongest H-bonded F-NTF gives the slowest ESIPT, which does not conform to the traditional ESIPT model. The results are rationalized by the trend of carbonyl oxygen basicity rather than -SH acidity. Namely, the thiol acidity relevant to the H-bond strength plays a minor role in the driving force of ESIPT. Instead, the proton-accepting strength governs ESIPT. That is to say, the noncanonical thiol H-bonding system undergoes an unconventional type of ESIPT.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Am Chem Soc Year: 2024 Type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Am Chem Soc Year: 2024 Type: Article Affiliation country: China