Your browser doesn't support javascript.
loading
Biodegradation capabilities of filamentous fungi in high-concentration heavy crude oil environments.
Cáceres-Zambrano, Jessica Zerimar; Rodríguez-Córdova, Leonardo Andrés; Sáez-Navarrete, César Antonio; Rives, Yoandy Coca.
Affiliation
  • Cáceres-Zambrano JZ; Doctorado en Ciencias de La Ingeniería, Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Macul, Chile. jzcaceres@uc.cl.
  • Rodríguez-Córdova LA; Escuela de Ingeniería, Facultad de Ingeniería, Universidad Santo Tomás, Avenida Ejército Libertador 146, Santiago, Región Metropolitana, Chile.
  • Sáez-Navarrete CA; Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Región Metropolitana, Chile.
  • Rives YC; Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Región Metropolitana, Chile.
Arch Microbiol ; 206(3): 123, 2024 Feb 26.
Article in En | MEDLINE | ID: mdl-38407586
ABSTRACT
In this comprehensive study, we delved into the capabilities of five fungal strains Aspergillus flavus, Aspergillus niger, Penicillium chrysogenum, Penicillium glabrum, and Penicillium rubens (the latter isolated from heavy crude oil [HCO]) in metabolizing HCO as a carbon source. Employing a meticulously designed experimental approach, conducted at room temperature (25 °C), we systematically explored various culture media and incubation periods. The results unveiled the exceptional resilience of all these fungi to HCO, with A. flavus standing out as the top performer. Notably, A. flavus exhibited robust growth, achieving a remarkable 59.1% expansion across the medium's surface, accompanied by distinctive macroscopic traits, including a cottony appearance and vibrant coloration. In an effort to further scrutinize its biotransformation prowess, we conducted experiments in a liquid medium, quantifying CO2 production through gas chromatography, which reached its zenith at day 30, signifying substantial bioconversion with a 38% increase in CO2 production. Additionally, we monitored changes in surface tension using the Du Noüy ring method, revealing a reduction in aqueous phase tension from 72.3 to 47 mN/m. This compelling evidence confirms that A. flavus adeptly metabolizes HCO to fuel its growth, while concurrently generating valuable biosurfactants. These findings underscore the immense biotechnological potential of A. flavus in addressing challenges related to HCO, thereby offering promising prospects for bioremediation and crude oil bioupgrading endeavors.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Aspergillus flavus / Carbon Dioxide Language: En Journal: Arch Microbiol Year: 2024 Type: Article Affiliation country: Chile

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Aspergillus flavus / Carbon Dioxide Language: En Journal: Arch Microbiol Year: 2024 Type: Article Affiliation country: Chile