Your browser doesn't support javascript.
loading
Ferritinophagy-Mediated Hippocampus Ferroptosis is Involved in Cognitive Impairment in Immature Rats Induced by Hypoxia Combined with Propofol.
Liu, Ling; Gao, Wen; Yang, Shun; Yang, Fei; Li, Shangyingying; Tian, Yaqiong; Yang, Li; Deng, Qianyu; Gan, Zhengwei; Tu, Shengfen.
Affiliation
  • Liu L; Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Cho
  • Gao W; Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Cho
  • Yang S; Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Cho
  • Yang F; Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Cho
  • Li S; Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Cho
  • Tian Y; Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Cho
  • Yang L; Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Cho
  • Deng Q; Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Cho
  • Gan Z; Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Cho
  • Tu S; Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Cho
Neurochem Res ; 49(7): 1703-1719, 2024 Jul.
Article in En | MEDLINE | ID: mdl-38512425
ABSTRACT
Propofol is a clinically common intravenous general anesthetic and is widely used for anesthesia induction, maintenance and intensive care unit (ICU) sedation in children. Hypoxemia is a common perioperative complication. In clinical work, we found that children with hypoxemia who received propofol anesthesia experienced significant postoperative cognitive changes. To explore the causes of this phenomenon, we conducted the study. In this study, our in vivo experiments found that immature rats exposed to hypoxia combined with propofol (HCWP) could develop cognitive impairment. We performed the RNA-seq analysis of its hippocampal tissues and found that autophagy and ferroptosis may play a role in our model. Next, we verified the participation of the two modes of death by detecting the expression of autophagy-related indexes Sequestosome 1 (SQSTM1) and Beclin1, and ferroptosis-related indicators Fe2+, reactive oxygen species (ROS) and glutathione peroxidase 4 (GPX4). Meanwhile, we found that ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, could improve cognitive impairment in immature rats caused by HCWP. In addition, we found that nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy, which acted as a key junction between autophagy and ferroptosis, was also involved. Finally, our in vitro experiments concluded that autophagy activation was an upstream factor in HCWP-induced hippocampus ferroptosis through the intervention of autophagy inhibitor 3-methyladenine (3-MA). Our study was expected to provide an attractive therapeutic target for cognitive impairment that occurred after HCWP exposures.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Propofol / Rats, Sprague-Dawley / Cognitive Dysfunction / Ferroptosis / Hippocampus / Hypoxia Limits: Animals Language: En Journal: Neurochem Res Year: 2024 Type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Propofol / Rats, Sprague-Dawley / Cognitive Dysfunction / Ferroptosis / Hippocampus / Hypoxia Limits: Animals Language: En Journal: Neurochem Res Year: 2024 Type: Article