Surface atom knockout for the active site exposure of alloy catalyst.
Proc Natl Acad Sci U S A
; 121(15): e2319525121, 2024 Apr 09.
Article
in En
| MEDLINE
| ID: mdl-38564637
ABSTRACT
The fine regulation of catalysts by the atomic-level removal of inactive atoms can promote the active site exposure for performance enhancement, whereas suffering from the difficulty in controllably removing atoms using current micro/nano-scale material fabrication technologies. Here, we developed a surface atom knockout method to promote the active site exposure in an alloy catalyst. Taking Cu3Pd alloy as an example, it refers to assemble a battery using Cu3Pd and Zn as cathode and anode, the charge process of which proceeds at about 1.1 V, equal to the theoretical potential difference between Cu2+/Cu and Zn2+/Zn, suggesting the electricity-driven dissolution of Cu atoms. The precise knockout of Cu atoms is confirmed by the linear relationship between the amount of the removed Cu atoms and the battery cumulative specific capacity, which is attributed to the inherent atom-electron-capacity correspondence. We observed the surface atom knockout process at different stages and studied the evolution of the chemical environment. The alloy catalyst achieves a higher current density for oxygen reduction reaction compared to the original alloy and Pt/C. This work provides an atomic fabrication method for material synthesis and regulation toward the wide applications in catalysis, energy, and others.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Proc Natl Acad Sci U S A
Year:
2024
Type:
Article
Affiliation country:
China