HighFold: accurately predicting structures of cyclic peptides and complexes with head-to-tail and disulfide bridge constraints.
Brief Bioinform
; 25(3)2024 Mar 27.
Article
in En
| MEDLINE
| ID: mdl-38706323
ABSTRACT
In recent years, cyclic peptides have emerged as a promising therapeutic modality due to their diverse biological activities. Understanding the structures of these cyclic peptides and their complexes is crucial for unlocking invaluable insights about protein target-cyclic peptide interaction, which can facilitate the development of novel-related drugs. However, conducting experimental observations is time-consuming and expensive. Computer-aided drug design methods are not practical enough in real-world applications. To tackles this challenge, we introduce HighFold, an AlphaFold-derived model in this study. By integrating specific details about the head-to-tail circle and disulfide bridge structures, the HighFold model can accurately predict the structures of cyclic peptides and their complexes. Our model demonstrates superior predictive performance compared to other existing approaches, representing a significant advancement in structure-activity research. The HighFold model is openly accessible at https//github.com/hongliangduan/HighFold.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Peptides, Cyclic
/
Disulfides
Language:
En
Journal:
Brief Bioinform
Journal subject:
BIOLOGIA
/
INFORMATICA MEDICA
Year:
2024
Type:
Article
Affiliation country:
China