Your browser doesn't support javascript.
loading
Ternary Solid Polymer Electrolytes at the Electrochemical Interface: A Computational Study.
Rivera-Pousa, Alejandro; Otero-Mato, José Manuel; Montes-Campos, Hadrian; Méndez-Morales, Trinidad; Diddens, Diddo; Heuer, Andreas; Varela, Luis Miguel.
Affiliation
  • Rivera-Pousa A; Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain.
  • Otero-Mato JM; Instituto de Materiais (iMATUS), Universidade de Santiago de Compostela, Avenida do Mestre Mateo 25, E-15706 Santiago de Compostela, Spain.
  • Montes-Campos H; Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain.
  • Méndez-Morales T; Instituto de Materiais (iMATUS), Universidade de Santiago de Compostela, Avenida do Mestre Mateo 25, E-15706 Santiago de Compostela, Spain.
  • Diddens D; Grupo de Nanomateriais, Fotónica e Materia Branda, Departamento de Física de Partículas, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain.
  • Heuer A; Instituto de Materiais (iMATUS), Universidade de Santiago de Compostela, Avenida do Mestre Mateo 25, E-15706 Santiago de Compostela, Spain.
  • Varela LM; CIQUP, Institute of Molecular Sciences (IMS)-Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre, 4169-007 Porto, Portugal.
Macromolecules ; 57(9): 3921-3936, 2024 May 14.
Article in En | MEDLINE | ID: mdl-38765500
ABSTRACT
Polymer-based solid-like gel electrolytes have emerged as a promising alternative to improve battery performance. However, there is a scarcity of studies on the behavior of these media at the electrochemical interface. In this work, we report classical MD simulations of ternary polymer electrolytes composed of poly(ethylene oxide), a lithium salt [lithium bis(trifluoromethanesulfonyl)imide], and different ionic liquids [1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] confined between two charged and uncharged graphene-like surfaces. The molecular solvation of Li+ ions and their diffusion as well as the polymer conformational picture were characterized in terms of the radial distribution functions, coordination numbers, number density profiles, orientations, displacement variance, polymer radius of gyration, and polymer end-to-end distance. Our results show that the layering behavior of the ternary electrolyte in the interfacial region leads to a decrease of Li+ mobility in the direction perpendicular to the electrodes and high energy barriers that hinder lithium cations from coming into direct contact with the graphene-like surface. The nature of the ionic liquid and its concentration were found to influence the structural and dynamic properties at the electrode/electrolyte interface, the electrolyte with low amounts of the pyrrolidinium-based ionic liquid being that with the best performance since it favors the migration of Li+ cations toward the negative electrode when compared to the imidazolium-based one.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Macromolecules Year: 2024 Type: Article Affiliation country: Spain

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Macromolecules Year: 2024 Type: Article Affiliation country: Spain