Your browser doesn't support javascript.
loading
Phosphorylation at Ser65 modulates ubiquitin conformational dynamics.
Yovanno, Remy A; Yu, Alvin; Wied, Tyler J; Lau, Albert Y.
Afiliación
  • Yovanno RA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, WBSB 706, Baltimore, MD 21205, USA.
  • Yu A; Department of Physiology and Biophysics, University of California, Irvine, 825 Health Sciences Road, Irvine, CA 92697, USA.
  • Wied TJ; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, WBSB 706, Baltimore, MD 21205, USA.
  • Lau AY; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, WBSB 706, Baltimore, MD 21205, USA. Electronic address: alau@jhmi.edu.
Structure ; 31(7): 884-890.e2, 2023 07 06.
Article en En | MEDLINE | ID: mdl-37267945
ABSTRACT
Ubiquitin phosphorylation at Ser65 increases the population of a rare C-terminally retracted (CR) conformation. Transition between the Major and CR ubiquitin conformations is critical for promoting mitochondrial degradation. The mechanisms by which the Major and CR conformations of Ser65-phosphorylated (pSer65) ubiquitin interconvert, however, remain unresolved. Here, we perform all-atom molecular dynamics simulations using the string method with swarms of trajectories to calculate the lowest free-energy path between these two conformers. Our analysis reveals the existence of a Bent intermediate in which the C-terminal residues of the ß5 strand shift to resemble the CR conformation, while pSer65 retains contacts resembling the Major conformation. This stable intermediate was reproduced in well-tempered metadynamics calculations but was less stable for a Gln2Ala mutant that disrupts contacts with pSer65. Lastly, dynamical network modeling reveals that the transition from the Major to CR conformations involves a decoupling of residues near pSer65 from the adjacent ß1 strand.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ubiquitina / Simulación de Dinámica Molecular Tipo de estudio: Prognostic_studies Idioma: En Revista: Structure Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA / BIOTECNOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ubiquitina / Simulación de Dinámica Molecular Tipo de estudio: Prognostic_studies Idioma: En Revista: Structure Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA / BIOTECNOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos