Your browser doesn't support javascript.
loading
Construction and study of blood purification membrane modified with PDE inhibitor: Investigation of antiplatelet activity and hemocompatibility.
Fu, Xiao; Lei, Ting; Chen, Cong; Fu, Gan.
Afiliación
  • Fu X; Department of Hematology, National Hemophilia Comprehensive Care Center, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
  • Lei T; Powder Metallurgy Institute of Central South University, China.
  • Chen C; Department of Hematology, National Hemophilia Comprehensive Care Center, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China. Electronic address: chencong0516@csu.edu.cn.
  • Fu G; Department of Hematology, National Hemophilia Comprehensive Care Center, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
Colloids Surf B Biointerfaces ; 234: 113725, 2024 Feb.
Article en En | MEDLINE | ID: mdl-38157764
ABSTRACT
The recent "cell-based theory" of coagulation suggests that platelets serve as the site of coagulation factor reactions, making platelets an effective target for inhibiting membrane thrombosis. Unfortunately, there is limited research on how blood purification membranes affect platelet intracellular signaling. In this study, we modified polyethersulfone (PES) membranes with the platelet phosphodiesterase (PDE) inhibitor dipyridamole (DIP) and investigated the effects of the DIP/PES (DP) membranes on platelet adhesion, activation, aggregation, and secretion, as well as the role of the PDE-cyclic adenosine monophosphate (cAMP) intracellular signaling pathway. Additionally, we evaluated the hemocompatibility and preliminary in vivo safety of DP membranes. Our results demonstrate that the modified DP membranes effectively inhibited platelet adhesion, membrane CD62P expression, and plasma soluble P-selectin activation levels. Furthermore, we confirmed that DP membranes achieved platelet aggregation inhibition and reduced platelet factor 4 and ß-thromoglobulin secretion levels by inhibiting platelet intracellular PDE-cAMP signaling. Moreover, the modified DP membranes exhibited good anticoagulant and red blood cell membrane stability and complement resistance and demonstrated preliminary biocompatibility in mouse experiments. Collectively, these findings highlight the potential application of DP dialysis membranes in blood purification for critically ill patients.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Inhibidores de Fosfodiesterasa / Diálisis Renal Límite: Animals / Humans Idioma: En Revista: Colloids Surf B Biointerfaces Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Inhibidores de Fosfodiesterasa / Diálisis Renal Límite: Animals / Humans Idioma: En Revista: Colloids Surf B Biointerfaces Asunto de la revista: QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: China