Your browser doesn't support javascript.
loading
Longitudinal plasma proteomic analysis identifies biomarkers and combinational targets for anti-PD1-resistant cancer patients.
Tan, Qiaoyun; Gao, Ruyun; Zhang, Xiaomei; Yang, Jianliang; Xing, Puyuan; Yang, Sheng; Wang, Dan; Wang, Guibing; Wang, Shasha; Yao, Jiarui; Zhang, Zhishang; Tang, Le; Yu, Xiaobo; Han, Xiaohong; Shi, Yuankai.
Afiliación
  • Tan Q; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China.
  • Gao R; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China.
  • Zhang X; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, 102206, China.
  • Yang J; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China.
  • Xing P; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China.
  • Yang S; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China.
  • Wang D; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, 102206, China.
  • Wang G; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, 102206, China.
  • Wang S; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China.
  • Yao J; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China.
  • Zhang Z; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China.
  • Tang L; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China.
  • Yu X; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, 102206, China.
  • Han X; Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy
  • Shi Y; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study On Anticancer Molecular Targeted Drugs, Beijing, 100021, China. syuank
Cancer Immunol Immunother ; 73(3): 47, 2024 Feb 13.
Article en En | MEDLINE | ID: mdl-38349411
ABSTRACT
The response rate of anti-PD1 therapy is limited, and the influence of anti-PD1 therapy on cancer patients is unclear. To address these challenges, we conducted a longitudinal analysis of plasma proteomic changes with anti-PD1 therapy in non-small cell lung cancer (NSCLC), alveolar soft part sarcoma (ASPS), and lymphoma patients. We included 339 plasma samples before and after anti-PD1 therapy from 193 patients with NSCLC, ASPS, or lymphoma. The plasma proteins were detected using data-independent acquisition-mass spectrometry and customable antibody microarrays. Differential proteomic characteristics in responders (R) and non-responders (NR) before and after anti-PD1 therapy were elucidated. A total of 1019 proteins were detected using our in-depth proteomics platform and distributed across 10-12 orders of abundance. By comparing the differential plasma proteome expression between R and NR groups, 50, 206, and 268 proteins were identified in NSCLC, ASPS, and lymphoma patients, respectively. Th17, IL-17, and JAK-STAT signal pathways were identified upregulated in NR group, while cellular senescence and transcriptional misregulation pathways were activated in R group. Longitudinal proteomics analysis revealed the IL-17 signaling pathway was downregulated after treatment. Consistently, many proteins were identified as potential combinatorial therapeutic targets (e.g., IL-17A and CD22). Five noninvasive biomarkers (FLT4, SFTPB, GNPTG, F5, and IL-17A) were further validated in an independent lymphoma cohort (n = 39), and another three noninvasive biomarkers (KIT, CCL3, and TNFSF1) were validated in NSCLC cohort (n = 76). Our results provide molecular insights into the anti-PD1 therapy in cancer patients and identify new therapeutic strategies for anti-PD1-resistant patients.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Carcinoma de Pulmón de Células no Pequeñas / Neoplasias Pulmonares / Linfoma / Antiinfecciosos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Cancer Immunol Immunother Asunto de la revista: ALERGIA E IMUNOLOGIA / NEOPLASIAS / TERAPEUTICA Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Carcinoma de Pulmón de Células no Pequeñas / Neoplasias Pulmonares / Linfoma / Antiinfecciosos Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Cancer Immunol Immunother Asunto de la revista: ALERGIA E IMUNOLOGIA / NEOPLASIAS / TERAPEUTICA Año: 2024 Tipo del documento: Article País de afiliación: China