Consequences of reductive evolution for gene expression in an obligate endosymbiont.
Mol Microbiol
; 48(6): 1491-500, 2003 Jun.
Article
em En
| MEDLINE
| ID: mdl-12791133
The smallest cellular genomes are found in obligate symbiotic and pathogenic bacteria living within eukaryotic hosts. In comparison with large genomes of free-living relatives, these reduced genomes are rearranged and have lost most regulatory elements. To test whether reduced bacterial genomes incur reduced regulatory capacities, we used full-genome microarrays to evaluate transcriptional response to environmental stress in Buchnera aphidicola, the obligate endosymbiont of aphids. The 580 genes of the B. aphidicola genome represent a subset of the 4500 genes known from the related organism, Escherichia coli. Although over 20 orthologues of E. coli heat stress (HS) genes are retained by B. aphidicola, only five were differentially expressed after near-lethal heat stress treatments, and only modest shifts were observed. Analyses of upstream regulatory regions revealed loss or degradation of most HS (sigma32) promoters. Genomic rearrangements downstream of an intact HS promoter yielded upregulation of a functionally unrelated and an inactivated gene. Reanalyses of comparable experimental array data for E. coli and Bacillus subtilis revealed that genome-wide differential expression was significantly lower in B. aphidicola. Our demonstration of a diminished stress response validates reports of temperature sensitivity in B. aphidicola and suggests that this reduced bacterial genome exhibits transcriptional inflexibility.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Simbiose
/
Transcrição Gênica
/
Regulação Bacteriana da Expressão Gênica
/
Genoma Bacteriano
/
Evolução Molecular
/
Buchnera
Limite:
Animals
Idioma:
En
Revista:
Mol Microbiol
Assunto da revista:
BIOLOGIA MOLECULAR
/
MICROBIOLOGIA
Ano de publicação:
2003
Tipo de documento:
Article
País de afiliação:
Estados Unidos