Your browser doesn't support javascript.
loading
Alcohol and proton transport in perfluorinated ionomer membranes for fuel cells.
Saito, Morihiro; Tsuzuki, Seiji; Hayamizu, Kikuko; Okada, Tatsuhiro.
Afiliação
  • Saito M; National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Center 5, Ibaraki 305-8565, Japan.
J Phys Chem B ; 110(48): 24410-7, 2006 Dec 07.
Article em En | MEDLINE | ID: mdl-17134195
ABSTRACT
To clarify the transport mechanisms of alcohols and proton in perfluorosulfonated ionomer (PFSI) membranes for fuel cells, four membranes having different equivalent weight (EW) values were examined. Membranes were immersed in methanol, ethanol, and 2-propanol to prepare a total of 12 samples, and membrane swelling, mass (alcohol and proton) transports, and interactions between alcohols and proton were investigated systematically in the fully penetrated state. The membrane expansion fraction theta and alcohol content lambda increased with decreasing the EW value for all the samples. The self-diffusion coefficients (D's) of the alkyl group and of OH (including protons) were measured separately by the pulsed-gradient spin-echo (PGSE)-NMR method and the D's also increased with decreasing the EW value. These results implied that the alcohols penetrate into the hydrophilic regions of the PFSI membranes and diffuse through the space expanded by the alcohols. The ionic cluster regions formed by the alcohols resemble those induced by water in the water swollen membrane, where protons dissociated from sulfonic acid groups transport through the regions together with water molecules. The D values decreased with increasing the molecular weight of alcohols. This trend was supported by activation energies Ea estimated from the Arrhenius plots of D in the temperature range from 30 to -40 degrees C. The PGSE-NMR measurements also revealed that protons move faster than the alkyl groups in the membranes. The proton transport by the Grotthuss (hopping) mechanism was facilitated by the increase of the alcohol content and the decrease of the molecular weight. This result was also supported by the experimental results of proton conductivity kappa and mobility u(H(+)). Density functional theory (DFT) calculations of the interaction energy DeltaE(int) between proton and alcohol (including OH) showed that the /DeltaE(int)/ increases with increasing the molecular weight of alcohols, which is in a inverse relationship with the kappa and u(H(+)) values. The proton transport depends strongly on the DeltaE(int) in the membranes.
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Chem B Assunto da revista: QUIMICA Ano de publicação: 2006 Tipo de documento: Article País de afiliação: Japão
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Phys Chem B Assunto da revista: QUIMICA Ano de publicação: 2006 Tipo de documento: Article País de afiliação: Japão