Your browser doesn't support javascript.
loading
Classifying individuals as physiological responders using hierarchical modeling.
Barker, Richard J; Schofield, Matthew R.
Afiliação
  • Barker RJ; Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin, New Zealand. rbarker@maths.otago.ac.nz
J Appl Physiol (1985) ; 105(2): 555-60, 2008 Aug.
Article em En | MEDLINE | ID: mdl-18511524
We outline the use of hierarchical modeling for inference about the categorization of subjects into "responder" and "nonresponder" classes when the true status of the subject is latent (hidden). If uncertainty of classification is ignored during analysis, then statistical inference may be unreliable. An important advantage of hierarchical modeling is that it facilitates the correct modeling of the hidden variable in terms of predictor variables and hypothesized biological relationships. This allows researchers to formalize inference that can address questions about why some subjects respond and others do not. We illustrate our approach using a recent study of hepcidin excretion in female marathon runners (Roecker L, Meier-Buttermilch R, Brechte L, Nemeth E, Ganz T. Eur J Appl Physiol 95: 569-571, 2005).
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fisiologia Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Adult / Female / Humans Idioma: En Revista: J Appl Physiol (1985) Assunto da revista: FISIOLOGIA Ano de publicação: 2008 Tipo de documento: Article País de afiliação: Nova Zelândia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fisiologia Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Adult / Female / Humans Idioma: En Revista: J Appl Physiol (1985) Assunto da revista: FISIOLOGIA Ano de publicação: 2008 Tipo de documento: Article País de afiliação: Nova Zelândia