Your browser doesn't support javascript.
loading
Differential modulation of N-type calcium channels by micro-opioid receptors in oxytocinergic versus vasopressinergic neurohypophysial terminals.
Ortiz-Miranda, Sonia I; Dayanithi, Govindan; Velázquez-Marrero, Cristina; Custer, Edward E; Treistman, Steven N; Lemos, José R.
Afiliação
  • Ortiz-Miranda SI; Department of Physiology & Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
J Cell Physiol ; 225(1): 276-88, 2010 Oct.
Article em En | MEDLINE | ID: mdl-20509142
Opioids modulate the electrical activity of magnocellular neurons (MCN) and inhibit neuropeptide release at their terminals in the neurohypophysis. We have previously shown that micro-opioid receptor (MOR) activation induces a stronger inhibition of oxytocin (OT) than vasopressin (AVP) release from isolated MCN terminals. This higher sensitivity of OT release is due, at least in part, to the selective targeting of R-type calcium channels. We now describe the underlying basis for AVP's weaker inhibition by MOR activation and provide a more complete explanation of the complicated effects on neuropeptide release. We found that N-type calcium channels in AVP terminals are differentially modulated by MOR; enhanced at lower concentrations but increasingly inhibited at higher concentrations of agonists. On the other hand, N-type calcium channels in OT terminals were always inhibited. The response pattern in co-labeled terminals was analogous to that observed in AVP-containing terminals. Changes in intracellular calcium concentration and neuropeptide release corroborated these results as they showed a similar pattern of enhancement and inhibition in AVP terminals contrasting with solely inhibitory responses in OT terminals to MOR agonists. We established that fast translocation of Ca(2+) channels to the plasma membrane was not mediating current increments and thus, changes in channel kinetic properties are most likely involved. Finally, we reveal a distinct Ca-channel beta-subunit expression between each type of nerve endings that could explain some of the differences in responses to MOR activation. These results help advance our understanding of the complex modulatory mechanisms utilized by MORs in regulating presynaptic neuropeptide release.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neuro-Hipófise / Sinapses / Arginina Vasopressina / Ocitocina / Receptores Opioides mu / Canais de Cálcio Tipo N Limite: Animals Idioma: En Revista: J Cell Physiol Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neuro-Hipófise / Sinapses / Arginina Vasopressina / Ocitocina / Receptores Opioides mu / Canais de Cálcio Tipo N Limite: Animals Idioma: En Revista: J Cell Physiol Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Estados Unidos