Your browser doesn't support javascript.
loading
Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs.
Kim, Changsung; Wong, Johnson; Wen, Jianyan; Wang, Shirong; Wang, Cheng; Spiering, Sean; Kan, Natalia G; Forcales, Sonia; Puri, Pier Lorenzo; Leone, Teresa C; Marine, Joseph E; Calkins, Hugh; Kelly, Daniel P; Judge, Daniel P; Chen, Huei-Sheng Vincent.
Afiliação
  • Kim C; Del E. Webb Neuroscience, Aging & Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA.
Nature ; 494(7435): 105-10, 2013 Feb 07.
Article em En | MEDLINE | ID: mdl-23354045
ABSTRACT
Cellular reprogramming of somatic cells to patient-specific induced pluripotent stem cells (iPSCs) enables in vitro modelling of human genetic disorders for pathogenic investigations and therapeutic screens. However, using iPSC-derived cardiomyocytes (iPSC-CMs) to model an adult-onset heart disease remains challenging owing to the uncertainty regarding the ability of relatively immature iPSC-CMs to fully recapitulate adult disease phenotypes. Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an inherited heart disease characterized by pathological fatty infiltration and cardiomyocyte loss predominantly in the right ventricle, which is associated with life-threatening ventricular arrhythmias. Over 50% of affected individuals have desmosome gene mutations, most commonly in PKP2, encoding plakophilin-2 (ref. 9). The median age at presentation of ARVD/C is 26 years. We used previously published methods to generate iPSC lines from fibroblasts of two patients with ARVD/C and PKP2 mutations. Mutant PKP2 iPSC-CMs demonstrate abnormal plakoglobin nuclear translocation and decreased ß-catenin activity in cardiogenic conditions; yet, these abnormal features are insufficient to reproduce the pathological phenotypes of ARVD/C in standard cardiogenic conditions. Here we show that induction of adult-like metabolic energetics from an embryonic/glycolytic state and abnormal peroxisome proliferator-activated receptor gamma (PPAR-γ) activation underlie the pathogenesis of ARVD/C. By co-activating normal PPAR-alpha-dependent metabolism and abnormal PPAR-γ pathway in beating embryoid bodies (EBs) with defined media, we established an efficient ARVD/C in vitro model within 2 months. This model manifests exaggerated lipogenesis and apoptosis in mutant PKP2 iPSC-CMs. iPSC-CMs with a homozygous PKP2 mutation also had calcium-handling deficits. Our study is the first to demonstrate that induction of adult-like metabolism has a critical role in establishing an adult-onset disease model using patient-specific iPSCs. Using this model, we revealed crucial pathogenic insights that metabolic derangement in adult-like metabolic milieu underlies ARVD/C pathologies, enabling us to propose novel disease-modifying therapeutic strategies.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Displasia Arritmogênica Ventricular Direita / Células-Tronco Pluripotentes Induzidas / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Displasia Arritmogênica Ventricular Direita / Células-Tronco Pluripotentes Induzidas / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Nature Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Estados Unidos