Protein recognition and selection through conformational and mutually induced fit.
Proc Natl Acad Sci U S A
; 110(51): 20545-50, 2013 Dec 17.
Article
em En
| MEDLINE
| ID: mdl-24297894
Protein-protein interactions drive most every biological process, but in many instances the domains mediating recognition are disordered. How specificity in binding is attained in the absence of defined structure contrasts with well-established experimental and theoretical work describing ligand binding to protein. The signaling protein calmodulin presents a unique opportunity to investigate mechanisms for target recognition given that it interacts with several hundred different targets. By advancing coarse-grained computer simulations and experimental techniques, mechanistic insights were gained in defining the pathways leading to recognition and in how target selectivity can be achieved at the molecular level. A model requiring mutually induced conformational changes in both calmodulin and target proteins was necessary and broadly informs how proteins can achieve both high affinity and high specificity.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Peptídeos
/
Calmodulina
/
Modelos Moleculares
/
Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Ano de publicação:
2013
Tipo de documento:
Article