Your browser doesn't support javascript.
loading
Structural plasticity of the Semliki Forest virus glycome upon interspecies transmission.
Crispin, Max; Harvey, David J; Bitto, David; Bonomelli, Camille; Edgeworth, Matthew; Scrivens, James H; Huiskonen, Juha T; Bowden, Thomas A.
Afiliação
  • Crispin M; Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom.
J Proteome Res ; 13(3): 1702-12, 2014 Mar 07.
Article em En | MEDLINE | ID: mdl-24467287
ABSTRACT
Cross-species viral transmission subjects parent and progeny alphaviruses to differential post-translational processing of viral envelope glycoproteins. Alphavirus biogenesis has been extensively studied, and the Semliki Forest virus E1 and E2 glycoproteins have been shown to exhibit differing degrees of processing of N-linked glycans. However the composition of these glycans, including that arising from different host cells, has not been determined. Here we determined the chemical composition of the glycans from the prototypic alphavirus, Semliki Forest virus, propagated in both arthropod and rodent cell lines, by using ion-mobility mass spectrometry and collision-induced dissociation analysis. We observe that both the membrane-proximal E1 fusion glycoprotein and the protruding E2 attachment glycoprotein display heterogeneous glycosylation that contains N-linked glycans exhibiting both limited and extensive processing. However, E1 contained predominantly highly processed glycans dependent on the host cell, with rodent and mosquito-derived E1 exhibiting complex-type and paucimannose-type glycosylation, respectively. In contrast, the protruding E2 attachment glycoprotein primarily contained conserved under-processed oligomannose-type structures when produced in both rodent and mosquito cell lines. It is likely that glycan processing of E2 is structurally restricted by steric-hindrance imposed by local viral protein structure. This contrasts E1, which presents glycans characteristic of the host cell and is accessible to enzymes. We integrated our findings with previous cryo-electron microscopy and crystallographic analyses to produce a detailed model of the glycosylated mature virion surface. Taken together, these data reveal the degree to which virally encoded protein structure and cellular processing enzymes shape the virion glycome during interspecies transmission of Semliki Forest virus.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polissacarídeos / Vírus da Floresta de Semliki / Vírion / Glicoproteínas de Membrana / Processamento de Proteína Pós-Traducional / Proteínas do Envelope Viral Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Proteome Res Assunto da revista: BIOQUIMICA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polissacarídeos / Vírus da Floresta de Semliki / Vírion / Glicoproteínas de Membrana / Processamento de Proteína Pós-Traducional / Proteínas do Envelope Viral Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J Proteome Res Assunto da revista: BIOQUIMICA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Reino Unido