Carbon-double-bond-free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au: structural control and photoaging effects.
Chemphyschem
; 15(6): 1194-200, 2014 Apr 14.
Article
em En
| MEDLINE
| ID: mdl-24634350
Carbon double bond-free printed solar cells have been fabricated with the structure and , in which CuSCN acts as a hole conductor. The thickness of the CH3NH3PbI3 layer is controlled by a hot air flow during spin coating. The best conversion efficiency (4.86%) is obtained with . However, a thick CH3NH3PbI3 layer on CuSCN is better for light-exposure stability (100 mW cm(-2) AM 1.5) when not encapsulated. Without the CuSCN coverage, the black CH3NH3PbI3 crystal changes to yellow during the light-exposure stability test, which is due to the transformation of the CH3NH3PbI3 perovskite crystal into hexagonal PbI2.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Chemphyschem
Assunto da revista:
BIOFISICA
/
QUIMICA
Ano de publicação:
2014
Tipo de documento:
Article