Your browser doesn't support javascript.
loading
Long-acting antituberculous therapeutic nanoparticles target macrophage endosomes.
Edagwa, Benson J; Guo, Dongwei; Puligujja, Pavan; Chen, Han; McMillan, JoEllyn; Liu, Xinming; Gendelman, Howard E; Narayanasamy, Prabagaran.
Afiliação
  • Edagwa BJ; Department of Pharmacology and Experimental Neuroscience, and.
  • Guo D; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA; and.
  • Puligujja P; Department of Pharmacology and Experimental Neuroscience, and.
  • Chen H; Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
  • McMillan J; Department of Pharmacology and Experimental Neuroscience, and.
  • Liu X; Department of Pharmacology and Experimental Neuroscience, and.
  • Gendelman HE; Department of Pharmacology and Experimental Neuroscience, and hegendel@unmc.edu.
  • Narayanasamy P; Department of Pharmacology and Experimental Neuroscience, and.
FASEB J ; 28(12): 5071-82, 2014 Dec.
Article em En | MEDLINE | ID: mdl-25122556
Eradication of Mycobacterium tuberculosis (MTB) infection requires daily administration of combinations of rifampin (RIF), isoniazid [isonicotinylhydrazine (INH)], pyrazinamide, and ethambutol, among other drug therapies. To facilitate and optimize MTB therapeutic selections, a mononuclear phagocyte (MP; monocyte, macrophage, and dendritic cell)-targeted drug delivery strategy was developed. Long-acting nanoformulations of RIF and an INH derivative, pentenyl-INH (INHP), were prepared, and their physicochemical properties were evaluated. This included the evaluation of MP particle uptake and retention, cell viability, and antimicrobial efficacy. Drug levels reached 6 µg/10(6) cells in human monocyte-derived macrophages (MDMs) for nanoparticle treatments compared with 0.1 µg/10(6) cells for native drugs. High RIF and INHP levels were retained in MDM for >15 d following nanoparticle loading. Rapid loss of native drugs was observed in cells and culture fluids within 24 h. Antimicrobial activities were determined against Mycobacterium smegmatis (M. smegmatis). Coadministration of nanoformulated RIF and INHP provided a 6-fold increase in therapeutic efficacy compared with equivalent concentrations of native drugs. Notably, nanoformulated RIF and INHP were found to be localized in recycling and late MDM endosomal compartments. These were the same compartments that contained the pathogen. Our results demonstrate the potential of antimicrobial nanomedicines to simplify MTB drug regimens.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Endossomos / Nanopartículas / Macrófagos / Antituberculosos Limite: Humans Idioma: En Revista: FASEB J Assunto da revista: BIOLOGIA / FISIOLOGIA Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Endossomos / Nanopartículas / Macrófagos / Antituberculosos Limite: Humans Idioma: En Revista: FASEB J Assunto da revista: BIOLOGIA / FISIOLOGIA Ano de publicação: 2014 Tipo de documento: Article