Your browser doesn't support javascript.
loading
Concise Review: Reprogramming, Behind the Scenes: Noncanonical Neural Stem Cell Signaling Pathways Reveal New, Unseen Regulators of Tissue Plasticity With Therapeutic Implications.
Poser, Steven W; Chenoweth, Josh G; Colantuoni, Carlo; Masjkur, Jimmy; Chrousos, George; Bornstein, Stefan R; McKay, Ronald D; Androutsellis-Theotokis, Andreas.
Afiliação
  • Poser SW; Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany.
  • Chenoweth JG; Lieber Institute for Brain Development, Baltimore, Maryland, USA.
  • Colantuoni C; Lieber Institute for Brain Development, Baltimore, Maryland, USA.
  • Masjkur J; Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany.
  • Chrousos G; First Department of Pediatrics, University of Athens Medical School, Athens, Greece Aghia Sophia Children's Hospital, Athens, Greece.
  • Bornstein SR; Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany.
  • McKay RD; Lieber Institute for Brain Development, Baltimore, Maryland, USA.
  • Androutsellis-Theotokis A; Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany Center for Regenerative Therapies Dresden, Dresden, Germany andreas.theotokis@uniklinikumdresden.de.
Stem Cells Transl Med ; 4(11): 1251-7, 2015 Nov.
Article em En | MEDLINE | ID: mdl-26371344
ABSTRACT
UNLABELLED Interest is great in the new molecular concepts that explain, at the level of signal transduction, the process of reprogramming. Usually, transcription factors with developmental importance are used, but these approaches give limited information on the signaling networks involved, which could reveal new therapeutic opportunities. Recent findings involving reprogramming by genetic means and soluble factors with well-studied downstream signaling mechanisms, including signal transducer and activator of transcription 3 (STAT3) and hairy and enhancer of split 3 (Hes3), shed new light into the molecular mechanisms that might be involved. We examine the appropriateness of common culture systems and their ability to reveal unusual (noncanonical) signal transduction pathways that actually operate in vivo. We then discuss such novel pathways and their importance in various plastic cell types, culminating in their emerging roles in reprogramming mechanisms. We also discuss a number of reprogramming paradigms (mouse induced pluripotent stem cells, direct conversion to neural stem cells, and in vivo conversion of acinar cells to ß-like cells). Specifically for acinar-to-ß-cell reprogramming paradigms, we discuss the common view of the underlying mechanism (involving the Janus kinase-STAT pathway that leads to STAT3-tyrosine phosphorylation) and present alternative interpretations that implicate STAT3-serine phosphorylation alone or serine and tyrosine phosphorylation occurring in sequential order. The implications for drug design and therapy are important given that different phosphorylation sites on STAT3 intercept different signaling pathways. We introduce a new molecular perspective in the field of reprogramming with broad implications in basic, biotechnological, and translational research.

SIGNIFICANCE:

Reprogramming is a powerful approach to change cell identity, with implications in both basic and applied biology. Most efforts involve the forced expression of key transcription factors, but recently, success has been reported with manipulating signal transduction pathways that might intercept them. It is important to start connecting the function of the classic reprogramming genes to signaling pathways that also mediate reprogramming, unifying the sciences of signal transduction, stem cell biology, and epigenetics. Neural stem cell studies have revealed the operation of noncanonical signaling pathways that are now appreciated to also operate during reprogramming, offering new mechanistic explanations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Transdução de Sinais / Proteínas de Ligação a DNA / Fator de Transcrição STAT3 / Reprogramação Celular / Células-Tronco Neurais Limite: Animals / Humans Idioma: En Revista: Stem Cells Transl Med Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Transdução de Sinais / Proteínas de Ligação a DNA / Fator de Transcrição STAT3 / Reprogramação Celular / Células-Tronco Neurais Limite: Animals / Humans Idioma: En Revista: Stem Cells Transl Med Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Alemanha