Your browser doesn't support javascript.
loading
Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments.
Tang, Shaogeng; Henne, W Mike; Borbat, Peter P; Buchkovich, Nicholas J; Freed, Jack H; Mao, Yuxin; Fromme, J Christopher; Emr, Scott D.
Afiliação
  • Tang S; Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States.
  • Henne WM; Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States.
  • Borbat PP; Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States.
  • Buchkovich NJ; Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States.
  • Freed JH; National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, United States.
  • Mao Y; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States.
  • Fromme JC; Weill Institute of Cell and Molecular Biology, Cornell University, Ithaca, United States.
  • Emr SD; Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States.
Elife ; 42015 Dec 15.
Article em En | MEDLINE | ID: mdl-26670543
ABSTRACT
The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that catalyze multiple topologically similar membrane-remodeling processes. Although ESCRT-III subunits polymerize into spirals, how individual ESCRT-III subunits are activated and assembled together into a membrane-deforming filament remains unknown. Here, we determine X-ray crystal structures of the most abundant ESCRT-III subunit Snf7 in its active conformation. Using pulsed dipolar electron spin resonance spectroscopy (PDS), we show that Snf7 activation requires a prominent conformational rearrangement to expose protein-membrane and protein-protein interfaces. This promotes the assembly of Snf7 arrays with ~30 Å periodicity into a membrane-sculpting filament. Using a combination of biochemical and genetic approaches, both in vitro and in vivo, we demonstrate that mutations on these protein interfaces halt Snf7 assembly and block ESCRT function. The architecture of the activated and membrane-bound Snf7 polymer provides crucial insights into the spatially unique ESCRT-III-mediated membrane remodeling.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Endossomos / Proteínas de Saccharomyces cerevisiae / Multimerização Proteica / Complexos Endossomais de Distribuição Requeridos para Transporte / Membranas Idioma: En Revista: Elife Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Endossomos / Proteínas de Saccharomyces cerevisiae / Multimerização Proteica / Complexos Endossomais de Distribuição Requeridos para Transporte / Membranas Idioma: En Revista: Elife Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos