Your browser doesn't support javascript.
loading
Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate.
Bondulich, Marie K; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy; Hanger, Diane P.
Afiliação
  • Bondulich MK; 1 King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, 125 Coldharbour Lane, London SE5 9NU, UK.
  • Guo T; 1 King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, 125 Coldharbour Lane, London SE5 9NU, UK.
  • Meehan C; 1 King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, 125 Coldharbour Lane, London SE5 9NU, UK.
  • Manion J; 1 King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, 125 Coldharbour Lane, London SE5 9NU, UK.
  • Rodriguez Martin T; 1 King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, 125 Coldharbour Lane, London SE5 9NU, UK.
  • Mitchell JC; 1 King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, 125 Coldharbour Lane, London SE5 9NU, UK.
  • Hortobagyi T; 1 King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, 125 Coldharbour Lane, London SE5 9NU, UK.
  • Yankova N; 1 King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, 125 Coldharbour Lane, London SE5 9NU, UK.
  • Stygelbout V; 2 Laboratory of Histology, Neuroanatomy and Neuropathology (CP 620), ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine 808, route de Lennik, 1070 Brussels, Belgium.
  • Brion JP; 2 Laboratory of Histology, Neuroanatomy and Neuropathology (CP 620), ULB Neuroscience Institute, Université Libre de Bruxelles, Faculty of Medicine 808, route de Lennik, 1070 Brussels, Belgium.
  • Noble W; 1 King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, 125 Coldharbour Lane, London SE5 9NU, UK.
  • Hanger DP; 1 King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, 125 Coldharbour Lane, London SE5 9NU, UK Diane.Hanger@kcl.ac.uk.
Brain ; 139(Pt 8): 2290-306, 2016 08.
Article em En | MEDLINE | ID: mdl-27297240
ABSTRACT
Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenilbutiratos / Proteínas tau / Tauopatias / Disfunção Cognitiva Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Female / Humans / Male Idioma: En Revista: Brain Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenilbutiratos / Proteínas tau / Tauopatias / Disfunção Cognitiva Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Female / Humans / Male Idioma: En Revista: Brain Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Reino Unido