Your browser doesn't support javascript.
loading
The role of protein dynamics in the evolution of new enzyme function.
Campbell, Eleanor; Kaltenbach, Miriam; Correy, Galen J; Carr, Paul D; Porebski, Benjamin T; Livingstone, Emma K; Afriat-Jurnou, Livnat; Buckle, Ashley M; Weik, Martin; Hollfelder, Florian; Tokuriki, Nobuhiko; Jackson, Colin J.
Afiliação
  • Campbell E; Research School of Chemistry, Australian National University, Canberra, Australia.
  • Kaltenbach M; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
  • Correy GJ; Department of Biochemistry, University of Cambridge, Cambridge, UK.
  • Carr PD; Research School of Chemistry, Australian National University, Canberra, Australia.
  • Porebski BT; Research School of Chemistry, Australian National University, Canberra, Australia.
  • Livingstone EK; Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
  • Afriat-Jurnou L; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
  • Buckle AM; Research School of Chemistry, Australian National University, Canberra, Australia.
  • Weik M; Research School of Chemistry, Australian National University, Canberra, Australia.
  • Hollfelder F; Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
  • Tokuriki N; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
  • Jackson CJ; Institut de Biologie Structurale, University Grenoble Alpes, Commissariat à l'Energie Atomique and Centre National de la Recherche Scientifique, Grenoble, France.
Nat Chem Biol ; 12(11): 944-950, 2016 Nov.
Article em En | MEDLINE | ID: mdl-27618189
ABSTRACT
Enzymes must be ordered to allow the stabilization of transition states by their active sites, yet dynamic enough to adopt alternative conformations suited to other steps in their catalytic cycles. The biophysical principles that determine how specific protein dynamics evolve and how remote mutations affect catalytic activity are poorly understood. Here we examine a 'molecular fossil record' that was recently obtained during the laboratory evolution of a phosphotriesterase from Pseudomonas diminuta to an arylesterase. Analysis of the structures and dynamics of nine protein variants along this trajectory, and three rationally designed variants, reveals cycles of structural destabilization and repair, evolutionary pressure to 'freeze out' unproductive motions and sampling of distinct conformations with specific catalytic properties in bi-functional intermediates. This work establishes that changes to the conformational landscapes of proteins are an essential aspect of molecular evolution and that change in function can be achieved through enrichment of preexisting conformational sub-states.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pseudomonas / Hidrolases de Éster Carboxílico / Evolução Molecular / Hidrolases de Triester Fosfórico Idioma: En Revista: Nat Chem Biol Assunto da revista: BIOLOGIA / QUIMICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pseudomonas / Hidrolases de Éster Carboxílico / Evolução Molecular / Hidrolases de Triester Fosfórico Idioma: En Revista: Nat Chem Biol Assunto da revista: BIOLOGIA / QUIMICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Austrália