Your browser doesn't support javascript.
loading
panelcn.MOPS: Copy-number detection in targeted NGS panel data for clinical diagnostics.
Povysil, Gundula; Tzika, Antigoni; Vogt, Julia; Haunschmid, Verena; Messiaen, Ludwine; Zschocke, Johannes; Klambauer, Günter; Hochreiter, Sepp; Wimmer, Katharina.
Afiliação
  • Povysil G; Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria.
  • Tzika A; Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria.
  • Vogt J; Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria.
  • Haunschmid V; Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria.
  • Messiaen L; Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama.
  • Zschocke J; Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria.
  • Klambauer G; Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria.
  • Hochreiter S; Institute of Bioinformatics, Johannes Kepler University Linz, Linz, Austria.
  • Wimmer K; Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria.
Hum Mutat ; 38(7): 889-897, 2017 07.
Article em En | MEDLINE | ID: mdl-28449315
Targeted next-generation-sequencing (NGS) panels have largely replaced Sanger sequencing in clinical diagnostics. They allow for the detection of copy-number variations (CNVs) in addition to single-nucleotide variants and small insertions/deletions. However, existing computational CNV detection methods have shortcomings regarding accuracy, quality control (QC), incidental findings, and user-friendliness. We developed panelcn.MOPS, a novel pipeline for detecting CNVs in targeted NGS panel data. Using data from 180 samples, we compared panelcn.MOPS with five state-of-the-art methods. With panelcn.MOPS leading the field, most methods achieved comparably high accuracy. panelcn.MOPS reliably detected CNVs ranging in size from part of a region of interest (ROI), to whole genes, which may comprise all ROIs investigated in a given sample. The latter is enabled by analyzing reads from all ROIs of the panel, but presenting results exclusively for user-selected genes, thus avoiding incidental findings. Additionally, panelcn.MOPS offers QC criteria not only for samples, but also for individual ROIs within a sample, which increases the confidence in called CNVs. panelcn.MOPS is freely available both as R package and standalone software with graphical user interface that is easy to use for clinical geneticists without any programming experience. panelcn.MOPS combines high sensitivity and specificity with user-friendliness rendering it highly suitable for routine clinical diagnostics.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia Computacional / Bases de Dados Genéticas / Variações do Número de Cópias de DNA Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Hum Mutat Assunto da revista: GENETICA MEDICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Áustria

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia Computacional / Bases de Dados Genéticas / Variações do Número de Cópias de DNA Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Revista: Hum Mutat Assunto da revista: GENETICA MEDICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Áustria