Your browser doesn't support javascript.
loading
Thermoneutrality but Not UCP1 Deficiency Suppresses Monocyte Mobilization Into Blood.
Williams, Jesse W; Elvington, Andrew; Ivanov, Stoyan; Kessler, Skyler; Luehmann, Hannah; Baba, Osamu; Saunders, Brian T; Kim, Ki-Wook; Johnson, Michael W; Craft, Clarissa S; Choi, Jae-Hoon; Sorci-Thomas, Mary G; Zinselmeyer, Bernd H; Brestoff, Jonathan R; Liu, Yongjian; Randolph, Gwendalyn J.
Afiliação
  • Williams JW; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
  • Elvington A; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
  • Ivanov S; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
  • Kessler S; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
  • Luehmann H; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
  • Baba O; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
  • Saunders BT; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
  • Kim KW; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
  • Johnson MW; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
  • Craft CS; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
  • Choi JH; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
  • Sorci-Thomas MG; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
  • Zinselmeyer BH; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
  • Brestoff JR; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
  • Liu Y; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
  • Randolph GJ; From the Department of Pathology and Immunology (J.W.W., A.E., S.I., S.K., O.B., B.T.S., K.-W.K., M.W.J., J.-H.C., B.H.Z., J.R.B., G.J.R.), Department of Radiology (H.L., Y.L.), and Department of Medicine, Division of Bone and Mineral Diseases (C.S.C.), Washington University School of Medicine, St.
Circ Res ; 121(6): 662-676, 2017 Sep 01.
Article em En | MEDLINE | ID: mdl-28696252
ABSTRACT
RATIONALE Ambient temperature is a risk factor for cardiovascular disease. Cold weather increases cardiovascular events, but paradoxically, cold exposure is metabolically protective because of UCP1 (uncoupling protein 1)-dependent thermogenesis.

OBJECTIVE:

We sought to determine the differential effects of ambient environmental temperature challenge and UCP1 activation in relation to cardiovascular disease progression. METHODS AND

RESULTS:

Using mouse models of atherosclerosis housed at 3 different ambient temperatures, we observed that cold temperature enhanced, whereas thermoneutral housing temperature inhibited atherosclerotic plaque growth, as did deficiency in UCP1. However, whereas UCP1 deficiency promoted poor glucose tolerance, thermoneutral housing enhanced glucose tolerance, and this effect held even in the context of UCP1 deficiency. In conditions of thermoneutrality, but not UCP1 deficiency, circulating monocyte counts were reduced, likely accounting for fewer monocytes entering plaques. Reductions in circulating blood monocytes were also found in a large human cohort in correlation with environmental temperature. By contrast, reduced plaque growth in mice lacking UCP1 was linked to lower cholesterol. Through application of a positron emission tomographic tracer to track CCR2+ cell localization and intravital 2-photon imaging of bone marrow, we associated thermoneutrality with an increased monocyte retention in bone marrow. Pharmacological activation of ß3-adrenergic receptors applied to mice housed at thermoneutrality induced UCP1 in beige fat pads but failed to promote monocyte egress from the marrow.

CONCLUSIONS:

Warm ambient temperature is, like UCP1 deficiency, atheroprotective, but the mechanisms of action differ. Thermoneutrality associates with reduced monocyte egress from the bone marrow in a UCP1-dependent manner in mice and likewise may also suppress blood monocyte counts in man.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Monócitos / Termogênese / Aterosclerose / Proteína Desacopladora 1 Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Circ Res Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Monócitos / Termogênese / Aterosclerose / Proteína Desacopladora 1 Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Circ Res Ano de publicação: 2017 Tipo de documento: Article