Your browser doesn't support javascript.
loading
Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast.
Zhu, Zhiwei; Zhou, Yongjin J; Kang, Min-Kyoung; Krivoruchko, Anastasia; Buijs, Nicolaas A; Nielsen, Jens.
Afiliação
  • Zhu Z; Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
  • Zhou YJ; Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
  • Kang MK; Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
  • Krivoruchko A; Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
  • Buijs NA; Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
  • Nielsen J; Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability,
Metab Eng ; 44: 81-88, 2017 11.
Article em En | MEDLINE | ID: mdl-28939277
ABSTRACT
Microbial synthesis of medium chain aliphatic hydrocarbons, attractive drop-in molecules to gasoline and jet fuels, is a promising way to reduce our reliance on petroleum-based fuels. In this study, we enabled the synthesis of straight chain hydrocarbons (C7-C13) by yeast Saccharomyces cerevisiae through engineering fatty acid synthases to control the chain length of fatty acids and introducing heterologous pathways for alkane or 1-alkene synthesis. We carried out enzyme engineering/screening of the fatty aldehyde deformylating oxygenase (ADO), and compartmentalization of the alkane biosynthesis pathway into peroxisomes to improve alkane production. The two-step synthesis of alkanes was found to be inefficient due to the formation of alcohols derived from aldehyde intermediates. Alternatively, the drain of aldehyde intermediates could be circumvented by introducing a one-step decarboxylation of fatty acids to 1-alkenes, which could be synthesized at a level of 3mg/L, 25-fold higher than that of alkanes produced via aldehydes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Peroxissomos / Proteínas de Saccharomyces cerevisiae / Alcanos / Alcenos / Ácidos Graxos / Engenharia Metabólica Idioma: En Revista: Metab Eng Assunto da revista: ENGENHARIA BIOMEDICA / METABOLISMO Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Suécia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Peroxissomos / Proteínas de Saccharomyces cerevisiae / Alcanos / Alcenos / Ácidos Graxos / Engenharia Metabólica Idioma: En Revista: Metab Eng Assunto da revista: ENGENHARIA BIOMEDICA / METABOLISMO Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Suécia