Your browser doesn't support javascript.
loading
D-serine released by astrocytes in brainstem regulates breathing response to CO2 levels.
Beltrán-Castillo, S; Olivares, M J; Contreras, R A; Zúñiga, G; Llona, I; von Bernhardi, R; Eugenín, J L.
Afiliação
  • Beltrán-Castillo S; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, 9170022, Chile.
  • Olivares MJ; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, 9170022, Chile.
  • Contreras RA; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, 9170022, Chile.
  • Zúñiga G; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, 9170022, Chile.
  • Llona I; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, 9170022, Chile.
  • von Bernhardi R; Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile. rvonb@med.puc.cl.
  • Eugenín JL; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Santiago, 9170022, Chile. jaime.eugenin@usach.cl.
Nat Commun ; 8(1): 838, 2017 10 10.
Article em En | MEDLINE | ID: mdl-29018191
Central chemoreception is essential for adjusting breathing to physiological demands, and for maintaining CO2 and pH homeostasis in the brain. CO2-induced ATP release from brainstem astrocytes stimulates breathing. NMDA receptor (NMDAR) antagonism reduces the CO2-induced hyperventilation by unknown mechanisms. Here we show that astrocytes in the mouse caudal medullary brainstem can synthesize, store, and release D-serine, an agonist for the glycine-binding site of the NMDAR, in response to elevated CO2 levels. We show that systemic and raphe nucleus D-serine administration to awake, unrestrained mice increases the respiratory frequency. Application of D-serine to brainstem slices also increases respiratory frequency, which was prevented by NMDAR blockade. Inhibition of D-serine synthesis, enzymatic degradation of D-serine, or the sodium fluoroacetate-induced impairment of astrocyte functions decrease the basal respiratory frequency and the CO2-induced respiratory response in vivo and in vitro. Our findings suggest that astrocytic release of D-serine may account for the glutamatergic contribution to central chemoreception.Astrocytes are involved in chemoreception in brainstem areas that regulate breathing rhythm, and astrocytes are known to release D-serine. Here the authors show that astrocyte release of D-serine contributes to CO2 sensing and breathing in brainstem slices, and in vivo in awake unrestrained mice.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Serina / Tronco Encefálico / Dióxido de Carbono / Astrócitos Limite: Animals Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Chile

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Serina / Tronco Encefálico / Dióxido de Carbono / Astrócitos Limite: Animals Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Chile