Your browser doesn't support javascript.
loading
Improving the Stability and Size Tunability of Cesium Lead Halide Perovskite Nanocrystals Using Trioctylphosphine Oxide as the Capping Ligand.
Wu, Linzhong; Zhong, Qixuan; Yang, Di; Chen, Min; Hu, Huicheng; Pan, Qi; Liu, Haiyu; Cao, Muhan; Xu, Yong; Sun, Baoquan; Zhang, Qiao.
Afiliação
  • Wu L; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, P. R. China.
  • Zhong Q; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, P. R. China.
  • Yang D; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, P. R. China.
  • Chen M; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, P. R. China.
  • Hu H; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, P. R. China.
  • Pan Q; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, P. R. China.
  • Liu H; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, P. R. China.
  • Cao M; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, P. R. China.
  • Xu Y; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, P. R. China.
  • Sun B; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, P. R. China.
  • Zhang Q; Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University , Suzhou, Jiangsu 215123, P. R. China.
Langmuir ; 33(44): 12689-12696, 2017 11 07.
Article em En | MEDLINE | ID: mdl-29032682
Recently, all-inorganic cesium lead halide (CsPbX3, X = Cl, Br, and I) nanocrystals (NCs) have drawn wide attention because of their excellent optoelectronic properties and potential applications. However, one of the most significant challenges of such NCs is their low stability against protonic solvents. In this work, we demonstrate that by incorporating a highly branched capping ligand, trioctylphosphine oxide (TOPO), into the traditional oleic acid/oleylamine system, monodisperse CsPbX3 NCs with excellent optoelectronic properties can be achieved at elevated temperatures (up to 260 °C). The size of such NCs can be varied in a relatively wide range. The capping of TOPO on NCs has been verified through Fourier transform infrared spectroscopy measurement. More importantly, the presence of TOPO can dramatically improve the stability of CsPbX3 NCs against ethanol treatment. After ethanol treatment for 100 min, the emission intensity of the TOPO-capped sample dropped only 5%, whereas that of non-TOPO-capped NCs dropped up to 86%. This work may shed some light on the preparation and application of CsPbX3 NCs with higher stability.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2017 Tipo de documento: Article