Your browser doesn't support javascript.
loading
Finite element modeling to analyze TEER values across silicon nanomembranes.
Khire, Tejas S; Nehilla, Barrett J; Getpreecharsawas, Jirachai; Gracheva, Maria E; Waugh, Richard E; McGrath, James L.
Afiliação
  • Khire TS; Biomedical Engineering, University of Rochester, Goergen Hall, Rochester, NY, 14627, USA.
  • Nehilla BJ; Biomedical Engineering, University of Rochester, Goergen Hall, Rochester, NY, 14627, USA.
  • Getpreecharsawas J; Nexgenia Inc., 454 North 34th St., Seattle, WA, 98103, USA.
  • Gracheva ME; Biomedical Engineering, University of Rochester, Goergen Hall, Rochester, NY, 14627, USA.
  • Waugh RE; Department of Physics, Clarkson University, 277 Science Center, Potsdam, NY, 13699, USA.
  • McGrath JL; Biomedical Engineering, University of Rochester, Goergen Hall, Rochester, NY, 14627, USA.
Biomed Microdevices ; 20(1): 11, 2018 01 05.
Article em En | MEDLINE | ID: mdl-29305767
Silicon nanomembranes are ultrathin, highly permeable, optically transparent and biocompatible substrates for the construction of barrier tissue models. Trans-epithelial/endothelial electrical resistance (TEER) is often used as a non-invasive, sensitive and quantitative technique to assess barrier function. The current study characterizes the electrical behavior of devices featuring silicon nanomembranes to facilitate their application in TEER studies. In conventional practice with commercial systems, raw resistance values are multiplied by the area of the membrane supporting cell growth to normalize TEER measurements. We demonstrate that under most circumstances, this multiplication does not 'normalize' TEER values as is assumed, and that the assumption is worse if applied to nanomembrane chips with a limited active area. To compare the TEER values from nanomembrane devices to those obtained from conventional polymer track-etched (TE) membranes, we develop finite element models (FEM) of the electrical behavior of the two membrane systems. Using FEM and parallel cell-culture experiments on both types of membranes, we successfully model the evolution of resistance values during the growth of endothelial monolayers. Further, by exploring the relationship between the models we develop a 'correction' function, which when applied to nanomembrane TEER, maps to experiments on conventional TE membranes. In summary, our work advances the the utility of silicon nanomembranes as substrates for barrier tissue models by developing an interpretation of TEER values compatible with conventional systems.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Impedância Elétrica / Análise de Elementos Finitos / Nanoestruturas / Membranas Artificiais Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Biomed Microdevices Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Impedância Elétrica / Análise de Elementos Finitos / Nanoestruturas / Membranas Artificiais Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Biomed Microdevices Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos