Your browser doesn't support javascript.
loading
Inhibition of RhoA reduces propofol-mediated growth cone collapse, axonal transport impairment, loss of synaptic connectivity, and behavioural deficits.
Pearn, M L; Schilling, J M; Jian, M; Egawa, J; Wu, C; Mandyam, C D; Fannon-Pavlich, M J; Nguyen, U; Bertoglio, J; Kodama, M; Mahata, S K; DerMardirossian, C; Lemkuil, B P; Han, R; Mobley, W C; Patel, H H; Patel, P M; Head, B P.
Afiliação
  • Pearn ML; Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA.
  • Schilling JM; Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA.
  • Jian M; Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA; Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
  • Egawa J; Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA.
  • Wu C; Department of Neurosciences, UCSD, San Diego, CA, USA.
  • Mandyam CD; Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA.
  • Fannon-Pavlich MJ; Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA.
  • Nguyen U; Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA.
  • Bertoglio J; INSERM U749, Institut Gustave Roussy, Universite Paris-sud, Paris, France.
  • Kodama M; Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA; Metabolic Physiology and Ultrastructural Biology Laboratory, UCSD, San Diego CA, USA; Department of Anesthesiology, National Defense Medical College, Tokorozawa, Saitama, Ja
  • Mahata SK; Metabolic Physiology and Ultrastructural Biology Laboratory, UCSD, San Diego CA, USA.
  • DerMardirossian C; Department of Immunology and Microbial Sciences, TSRI, La Jolla, CA, USA; Department of Cell and Molecular Biology, TSRI, La Jolla, CA, USA.
  • Lemkuil BP; Department of Anesthesiology, UCSD, San Diego, CA, USA.
  • Han R; Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
  • Mobley WC; Department of Neurosciences, UCSD, San Diego, CA, USA.
  • Patel HH; Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA.
  • Patel PM; Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA.
  • Head BP; Veterans Affairs San Diego Healthcare System, UCSD, San Diego CA, USA; Department of Anesthesiology, UCSD, San Diego, CA, USA. Electronic address: bhead@ucsd.edu.
Br J Anaesth ; 120(4): 745-760, 2018 Apr.
Article em En | MEDLINE | ID: mdl-29576115
BACKGROUND: Exposure of the developing brain to propofol results in cognitive deficits. Recent data suggest that inhibition of neuronal apoptosis does not prevent cognitive defects, suggesting mechanisms other than neuronal apoptosis play a role in anaesthetic neurotoxicity. Proper neuronal growth during development is dependent upon growth cone morphology and axonal transport. Propofol modulates actin dynamics in developing neurones, causes RhoA-dependent depolymerisation of actin, and reduces dendritic spines and synapses. We hypothesised that RhoA inhibition prevents synaptic loss and subsequent cognitive deficits. The present study tested whether RhoA inhibition with the botulinum toxin C3 (TAT-C3) prevents propofol-induced synapse and neurite loss, and preserves cognitive function. METHODS: RhoA activation, growth cone morphology, and axonal transport were measured in neonatal rat neurones (5-7 days in vitro) exposed to propofol. Synapse counts (electron microscopy), dendritic arborisation (Golgi-Cox), and network connectivity were measured in mice (age 28 days) previously exposed to propofol at postnatal day 5-7. Memory was assessed in adult mice (age 3 months) previously exposed to propofol at postnatal day 5-7. RESULTS: Propofol increased RhoA activation, collapsed growth cones, and impaired retrograde axonal transport of quantum dot-labelled brain-derived neurotrophic factor, all of which were prevented with TAT-C3. Adult mice previously treated with propofol had decreased numbers of total hippocampal synapses and presynaptic vesicles, reduced hippocampal dendritic arborisation, and infrapyramidal mossy fibres. These mice also exhibited decreased hippocampal-dependent contextual fear memory recall. All anatomical and behavioural changes were prevented with TAT-C3 pre-treatment. CONCLUSION: Inhibition of RhoA prevents propofol-mediated hippocampal neurotoxicity and associated cognitive deficits.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transporte Axonal / Sinapses / Comportamento Animal / Propofol / Cones de Crescimento / Proteína rhoA de Ligação ao GTP Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Br J Anaesth Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transporte Axonal / Sinapses / Comportamento Animal / Propofol / Cones de Crescimento / Proteína rhoA de Ligação ao GTP Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Br J Anaesth Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos