Your browser doesn't support javascript.
loading
Ablation of proliferating neural stem cells during early life is sufficient to reduce adult hippocampal neurogenesis.
Youssef, Mary; Krish, Varsha S; Kirshenbaum, Greer S; Atsak, Piray; Lass, Tamara J; Lieberman, Sophie R; Leonardo, E David; Dranovsky, Alex.
Afiliação
  • Youssef M; Department of Psychiatry, Columbia University, New York, New York 10032.
  • Krish VS; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, 10032.
  • Kirshenbaum GS; Graduate Program in Neurobiology and Behavior, Columbia University, New York, New York, 10032.
  • Atsak P; Department of Psychiatry, Columbia University, New York, New York 10032.
  • Lass TJ; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, 10032.
  • Lieberman SR; Department of Neuroscience and Behavior, Barnard College, New York, New York, 10027.
  • Leonardo ED; Department of Psychiatry, Columbia University, New York, New York 10032.
  • Dranovsky A; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, 10032.
Hippocampus ; 28(8): 586-601, 2018 08.
Article em En | MEDLINE | ID: mdl-29742815
ABSTRACT
Environmental exposures during early life, but not during adolescence or adulthood, lead to persistent reductions in neurogenesis in the adult hippocampal dentate gyrus (DG). The mechanisms by which early life exposures lead to long-term deficits in neurogenesis remain unclear. Here, we investigated whether targeted ablation of dividing neural stem cells during early life is sufficient to produce long-term decreases in DG neurogenesis. Having previously found that the stem cell lineage is resistant to long-term effects of transient ablation of dividing stem cells during adolescence or adulthood (Kirshenbaum, Lieberman, Briner, Leonardo, & Dranovsky, ), we used a similar pharmacogenetic approach to target dividing neural stem cells for elimination during early life periods sensitive to environmental insults. We then assessed the Nestin stem cell lineage in adulthood. We found that the adult neural stem cell reservoir was depleted following ablation during the first postnatal week, when stem cells were highly proliferative, but not during the third postnatal week, when stem cells were more quiescent. Remarkably, ablating proliferating stem cells during either the first or third postnatal week led to reduced adult neurogenesis out of proportion to the changes in the stem cell pool, indicating a disruption of the stem cell function or niche following stem cell ablation in early life. These results highlight the first three postnatal weeks as a series of sensitive periods during which elimination of dividing stem cells leads to lasting alterations in adult DG neurogenesis and stem cell function. These findings contribute to our understanding of the relationship between DG development and adult neurogenesis, as well as suggest a possible mechanism by which early life experiences may lead to lasting deficits in adult hippocampal neurogenesis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proliferação de Células / Neurogênese / Células-Tronco Neurais / Hipocampo Idioma: En Revista: Hippocampus Assunto da revista: CEREBRO Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proliferação de Células / Neurogênese / Células-Tronco Neurais / Hipocampo Idioma: En Revista: Hippocampus Assunto da revista: CEREBRO Ano de publicação: 2018 Tipo de documento: Article