Your browser doesn't support javascript.
loading
Perfusion Magnetic Resonance Imaging Changes in Normal Appearing Brain Tissue after Radiotherapy in Glioblastoma Patients may Confound Longitudinal Evaluation of Treatment Response.
Fahlström, Markus; Blomquist, Erik; Nyholm, Tufve; Larsson, Elna-Marie.
Afiliação
  • Fahlström M; Department of Radiology, Surgical Sciences, Uppsala University, Uppsala, Sweden.
  • Blomquist E; Department of Experimental and Clinical Oncology, Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
  • Nyholm T; Department of Radiation Physics and Biomedical Engineering, Radiation Sciences, Umeå University, Umeå, Sweden.
  • Larsson EM; Department of Radiology, Surgical Sciences, Uppsala University, Uppsala, Sweden.
Radiol Oncol ; 52(2): 143-151, 2018 Jun.
Article em En | MEDLINE | ID: mdl-30018517
ABSTRACT

BACKGROUND:

The aim of this study was assess acute and early delayed radiation-induced changes in normal-appearing brain tissue perfusion as measured with perfusion magnetic resonance imaging (MRI) and the dependence of these changes on the fractionated radiotherapy (FRT) dose level. PATIENTS AND

METHODS:

Seventeen patients with glioma WHO grade III-IV treated with FRT were included in this prospective study, seven were excluded because of inconsistent FRT protocol or missing examinations. Dynamic susceptibility contrast MRI and contrast-enhanced 3D-T1-weighted (3D-T1w) images were acquired prior to and in average (standard deviation) 3.1 (3.3), 34.4 (9.5) and 103.3 (12.9) days after FRT. Pre-FRT 3D-T1w images were segmented into white- and grey matter. Cerebral blood volume (CBV) and cerebral blood flow (CBF) maps were calculated and co-registered patient-wise to pre-FRT 3D-T1w images. Seven radiation dose regions were created for each tissue type 0-5 Gy, 5-10 Gy, 10-20 Gy, 20-30 Gy, 30-40 Gy, 40-50 Gy and 50-60 Gy. Mean CBV and CBF were calculated in each dose region and normalised (nCBV and nCBF) to the mean CBV and CBF in 0-5 Gy white- and grey matter reference regions, respectively.

RESULTS:

Regional and global nCBV and nCBF in white- and grey matter decreased after FRT, followed by a tendency to recover. The response of nCBV and nCBF was dose-dependent in white matter but not in grey matter.

CONCLUSIONS:

Our data suggest that radiation-induced perfusion changes occur in normal-appearing brain tissue after FRT. This can cause an overestimation of relative tumour perfusion using dynamic susceptibility contrast MRI, and can thus confound tumour treatment evaluation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline / Observational_studies Idioma: En Revista: Radiol Oncol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Suécia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Guideline / Observational_studies Idioma: En Revista: Radiol Oncol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Suécia