Your browser doesn't support javascript.
loading
A Survey of Molecular Heterogeneity in Hepatocellular Carcinoma.
Jovel, Juan; Lin, Zhen; O'keefe, Sandra; Willows, Steven; Wang, Weiwei; Zhang, Guangzhi; Patterson, Jordan; Moctezuma-Velázquez, Carlos; Kelvin, David J; Ka-Shu Wong, Gane; Mason, Andrew L.
Afiliação
  • Jovel J; Department of Medicine University of Alberta Edmonton Canada.
  • Lin Z; Department of Medicine University of Alberta Edmonton Canada.
  • O'keefe S; Department of Medicine University of Alberta Edmonton Canada.
  • Willows S; Department of Medicine University of Alberta Edmonton Canada.
  • Wang W; Department of Medicine University of Alberta Edmonton Canada.
  • Zhang G; Department of Medicine University of Alberta Edmonton Canada.
  • Patterson J; Department of Medicine University of Alberta Edmonton Canada.
  • Moctezuma-Velázquez C; Department of Medicine University of Alberta Edmonton Canada.
  • Kelvin DJ; Division of Experimental Therapeutics University Health Network Toronto Canada.
  • Ka-Shu Wong G; Department of Medicine University of Alberta Edmonton Canada.
  • Mason AL; Department of Biological Sciences University of Alberta Edmonton Canada.
Hepatol Commun ; 2(8): 941-955, 2018 Aug.
Article em En | MEDLINE | ID: mdl-30094405
ABSTRACT
Understanding the heterogeneity of dysregulated pathways associated with the development of hepatocellular carcinoma (HCC) may provide prognostic and therapeutic avenues for disease management. As HCC involves a complex process of genetic and epigenetic modifications, we evaluated expression of both polyadenylated transcripts and microRNAs from HCC and liver samples derived from two cohorts of patients undergoing either partial hepatic resection or liver transplantation. Copy number variants were inferred from whole genome low-pass sequencing data, and a set of 56 cancer-related genes were screened using an oncology panel assay. HCC was associated with marked transcriptional deregulation of hundreds of protein-coding genes. In the partially resected livers, diminished transcriptional activity was observed in genes associated with drug catabolism and increased expression in genes related to inflammatory responses and cell proliferation. Moreover, several long noncoding RNAs and microRNAs not previously linked with HCC were found to be deregulated. In liver transplant recipients, down-regulation of genes involved in energy production and up-regulation of genes associated with glycolysis were detected. Numerous copy number variants events were observed, with hotspots on chromosomes 1 and 17. Amplifications were more common than deletions and spanned regions containing genes potentially involved in tumorigenesis. Colony stimulating factor 1 receptor (CSF1R), fibroblast growth factor receptor 3 (FGFR3), fms-like tyrosine kinase 3 (FLT3), nucleolar phosphoprotein B23 (NPM1), platelet-derived growth factor receptor alpha polypeptide (PDGFRA), phosphatase and tensin homolog (PTEN), G-protein-coupled receptors-like receptor Smoothened (SMO), and tumor protein P53 (TP53) were mutated in all tumors; another 26 cancer-related genes were mutated with variable penetrance.

Conclusion:

Our results underscore the marked molecular heterogeneity between HCC tumors and reinforce the notion that precision medicine approaches are needed for management of individual HCC. These data will serve as a resource to generate hypotheses for further research to improve our understanding of HCC biology. (Hepatology Communications 2018; 00000-000).

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Hepatol Commun Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Hepatol Commun Ano de publicação: 2018 Tipo de documento: Article