Your browser doesn't support javascript.
loading
The Parkinson's disease gene product DJ-1 modulates miR-221 to promote neuronal survival against oxidative stress.
Oh, Stephanie E; Park, Hye-Jin; He, Liqiang; Skibiel, Catherine; Junn, Eunsung; Mouradian, M Maral.
Afiliação
  • Oh SE; Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854, USA.
  • Park HJ; Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854, USA.
  • He L; Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854, USA.
  • Skibiel C; Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854, USA.
  • Junn E; Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854, USA.
  • Mouradian MM; Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854, USA. Electronic address: m.mouradian@rutgers.edu.
Redox Biol ; 19: 62-73, 2018 10.
Article em En | MEDLINE | ID: mdl-30107296
ABSTRACT
DJ-1 is a highly conserved protein that protects neurons against oxidative stress and whose loss of function mutations are linked to recessively inherited Parkinson's disease (PD). While a number of signaling pathways have been shown to be regulated by DJ-1, its role in controlling cell survival through non-coding RNAs remains poorly understood. Here, using a microarray screen, we found that knocking down DJ-1 in human neuroblastoma cells results in down-regulation of microRNA-221 (miR-221). This is one of the most abundant miRNAs in the human brain and promotes neurite outgrowth and neuronal differentiation. Yet the molecular mechanism linking miR-221 to genetic forms of PD has not been studied. Consistent with the microarray data, miR-221 expression is also decreased in DJ-1-/- mouse brains. Re-introduction of wild-type DJ-1, but not its PD-linked pathogenic M26I mutant, restores miR-221 expression. Notably, over-expression of miR-221 is protective against 1-methyl-4-phenylpyridinium (MPP+)-induced cell death, while inhibition of endogenous miR-221 sensitizes cells to this toxin. Additionally, miR-221 down-regulates the expression of several pro-apoptotic proteins at basal conditions and prevents oxidative stress-induced up-regulation of bcl-2-like protein 11 (BIM). Accordingly, miR-221 protects differentiated DJ-1 knock-down ReNcell VM human dopaminergic neuronal cells from MPP+-induced neurite retraction and cell death. DJ-1 is a known activator of the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) pathway and may modulate miR-221 levels in part through this pathway. We found that inhibiting ERK1/2 decreases miR-221 levels, whereas over-expressing ERK1 in DJ-1 knock-down cells increases miR-221 levels. These findings point to a new cytoprotective mechanism by which DJ-1 may increase miR-221 expression through the MAPK/ERK pathway, subsequently leading to repression of apoptotic molecules. The inability of a pathogenic DJ-1 mutant to modulate miR-221 further supports the relevance of this mechanism in neuronal health and its failure in DJ-1-linked PD.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Estresse Oxidativo / MicroRNAs / Proteína Desglicase DJ-1 Limite: Animals / Humans / Male Idioma: En Revista: Redox Biol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Estresse Oxidativo / MicroRNAs / Proteína Desglicase DJ-1 Limite: Animals / Humans / Male Idioma: En Revista: Redox Biol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos