Your browser doesn't support javascript.
loading
Inferring single-trial neural population dynamics using sequential auto-encoders.
Pandarinath, Chethan; O'Shea, Daniel J; Collins, Jasmine; Jozefowicz, Rafal; Stavisky, Sergey D; Kao, Jonathan C; Trautmann, Eric M; Kaufman, Matthew T; Ryu, Stephen I; Hochberg, Leigh R; Henderson, Jaimie M; Shenoy, Krishna V; Abbott, L F; Sussillo, David.
Afiliação
  • Pandarinath C; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA. chethan@gatech.edu.
  • O'Shea DJ; Department of Neurosurgery, Emory University, Atlanta, GA, USA. chethan@gatech.edu.
  • Collins J; Department of Neurosurgery, Stanford University, Stanford, CA, USA. chethan@gatech.edu.
  • Jozefowicz R; Department of Electrical Engineering, Stanford University, Stanford, CA, USA. chethan@gatech.edu.
  • Stavisky SD; Stanford Neurosciences Institute, Stanford University, Stanford, CA, USA. chethan@gatech.edu.
  • Kao JC; Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
  • Trautmann EM; Neurosciences Graduate Program, Stanford University, Stanford, CA, USA.
  • Kaufman MT; Google AI, Google Inc., Mountain View, CA, USA.
  • Ryu SI; University of California, Berkeley, Berkeley, CA, USA.
  • Hochberg LR; Google AI, Google Inc., Mountain View, CA, USA.
  • Henderson JM; OpenAI, San Francisco, CA, USA.
  • Shenoy KV; Department of Neurosurgery, Stanford University, Stanford, CA, USA.
  • Abbott LF; Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
  • Sussillo D; Stanford Neurosciences Institute, Stanford University, Stanford, CA, USA.
Nat Methods ; 15(10): 805-815, 2018 10.
Article em En | MEDLINE | ID: mdl-30224673
Neuroscience is experiencing a revolution in which simultaneous recording of thousands of neurons is revealing population dynamics that are not apparent from single-neuron responses. This structure is typically extracted from data averaged across many trials, but deeper understanding requires studying phenomena detected in single trials, which is challenging due to incomplete sampling of the neural population, trial-to-trial variability, and fluctuations in action potential timing. We introduce latent factor analysis via dynamical systems, a deep learning method to infer latent dynamics from single-trial neural spiking data. When applied to a variety of macaque and human motor cortical datasets, latent factor analysis via dynamical systems accurately predicts observed behavioral variables, extracts precise firing rate estimates of neural dynamics on single trials, infers perturbations to those dynamics that correlate with behavioral choices, and combines data from non-overlapping recording sessions spanning months to improve inference of underlying dynamics.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Potenciais de Ação / Modelos Neurológicos / Córtex Motor / Neurônios Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male / Middle aged Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Potenciais de Ação / Modelos Neurológicos / Córtex Motor / Neurônios Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male / Middle aged Idioma: En Revista: Nat Methods Assunto da revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos