Your browser doesn't support javascript.
loading
A Genome-Wide Haploid Genetic Screen Identifies Heparan Sulfate-Associated Genes and the Macropinocytosis Modulator TMED10 as Factors Supporting Vaccinia Virus Infection.
Luteijn, Rutger D; van Diemen, Ferdy; Blomen, Vincent A; Boer, Ingrid G J; Manikam Sadasivam, Saravanan; van Kuppevelt, Toin H; Drexler, Ingo; Brummelkamp, Thijn R; Lebbink, Robert Jan; Wiertz, Emmanuel J.
Afiliação
  • Luteijn RD; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
  • van Diemen F; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
  • Blomen VA; Netherlands Cancer Institute, Amsterdam, The Netherlands.
  • Boer IGJ; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
  • Manikam Sadasivam S; Department of Membrane Biochemistry and Biophysics, Utrecht University, Utrecht, The Netherlands.
  • van Kuppevelt TH; Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands.
  • Drexler I; Institute for Virology, Universitätsklinikum Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
  • Brummelkamp TR; Netherlands Cancer Institute, Amsterdam, The Netherlands.
  • Lebbink RJ; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
  • Wiertz EJ; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands ewiertz@umcutrecht.nl.
J Virol ; 93(13)2019 07 01.
Article em En | MEDLINE | ID: mdl-30996093
ABSTRACT
Vaccinia virus is a promising viral vaccine and gene delivery candidate and has historically been used as a model to study poxvirus-host cell interactions. We employed a genome-wide insertional mutagenesis approach in human haploid cells to identify host factors crucial for vaccinia virus infection. A library of mutagenized HAP1 cells was exposed to modified vaccinia virus Ankara (MVA). Deep-sequencing analysis of virus-resistant cells identified host factors involved in heparan sulfate synthesis, Golgi organization, and vesicular protein trafficking. We validated EXT1, TM9SF2, and TMED10 (TMP21/p23/p24δ) as important host factors for vaccinia virus infection. The critical roles of EXT1 in heparan sulfate synthesis and vaccinia virus infection were confirmed. TM9SF2 was validated as a player mediating heparan sulfate expression, explaining its contribution to vaccinia virus infection. In addition, TMED10 was found to be crucial for virus-induced plasma membrane blebbing and phosphatidylserine-induced macropinocytosis, presumably by regulating the cell surface expression of the TAM receptor Axl.IMPORTANCE Poxviruses are large DNA viruses that can infect a wide range of host species. A number of these viruses are clinically important to humans, including variola virus (smallpox) and vaccinia virus. Since the eradication of smallpox, zoonotic infections with monkeypox virus and cowpox virus are emerging. Additionally, poxviruses can be engineered to specifically target cancer cells and are used as a vaccine vector against tuberculosis, influenza, and coronaviruses. Poxviruses rely on host factors for most stages of their life cycle, including attachment to the cell and entry. These host factors are crucial for virus infectivity and host cell tropism. We used a genome-wide knockout library of host cells to identify host factors necessary for vaccinia virus infection. We confirm a dominant role for heparin sulfate in mediating virus attachment. Additionally, we show that TMED10, previously not implicated in virus infections, facilitates virus uptake by modulating the cellular response to phosphatidylserine.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pinocitose / Vacínia / Vaccinia virus / Proteínas de Transporte Vesicular / Haploidia / Heparitina Sulfato Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Virol Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pinocitose / Vacínia / Vaccinia virus / Proteínas de Transporte Vesicular / Haploidia / Heparitina Sulfato Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Virol Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Holanda