Your browser doesn't support javascript.
loading
Effects on the Profile of Circulating miRNAs after Single Bouts of Resistance Training with and without Blood Flow Restriction-A Three-Arm, Randomized Crossover Trial.
Vogel, Johanna; Niederer, Daniel; Engeroff, Tobias; Vogt, Lutz; Troidl, Christian; Schmitz-Rixen, Thomas; Banzer, Winfried; Troidl, Kerstin.
Afiliação
  • Vogel J; Department of Sports Medicine, Institute of Sport Sciences, Goethe University, Ginnheimer Landstraße 39, 60487 Frankfurt, Germany. johvogel@em.uni-frankfurt.de.
  • Niederer D; Department of Sports Medicine, Institute of Sport Sciences, Goethe University, Ginnheimer Landstraße 39, 60487 Frankfurt, Germany.
  • Engeroff T; Department of Sports Medicine, Institute of Sport Sciences, Goethe University, Ginnheimer Landstraße 39, 60487 Frankfurt, Germany.
  • Vogt L; Department of Sports Medicine, Institute of Sport Sciences, Goethe University, Ginnheimer Landstraße 39, 60487 Frankfurt, Germany.
  • Troidl C; Department of Experimental Cardiology, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany.
  • Schmitz-Rixen T; Department of Cardiology, Kerckhoff Heart and Thorax Center, 61231 Bad Nauheim, Germany.
  • Banzer W; German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt am Main, Germany.
  • Troidl K; Department of Vascular and Endovascular Surgery, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
Int J Mol Sci ; 20(13)2019 Jul 02.
Article em En | MEDLINE | ID: mdl-31269677
BACKGROUND: The effects of blood flow restriction (training) may serve as a model of peripheral artery disease. In both conditions, circulating micro RNAs (miRNAs) are suggested to play a crucial role during exercise-induced arteriogenesis. We aimed to determine whether the profile of circulating miRNAs is altered after acute resistance training during blood flow restriction (BFR) as compared with unrestricted low- and high-volume training, and we hypothesized that miRNA that are relevant for arteriogenesis are affected after resistance training. METHODS: Eighteen healthy volunteers (aged 25 ± 2 years) were enrolled in this three-arm, randomized-balanced crossover study. The arms were single bouts of leg flexion/extension resistance training at (1) 70% of the individual single-repetition maximum (1RM), (2) at 30% of the 1RM, and (3) at 30% of the 1RM with BFR (artificially applied by a cuff at 300 mm Hg). Before the first exercise intervention, the individual 1RM (N) and the blood flow velocity (m/s) used to validate the BFR application were determined. During each training intervention, load-associated outcomes (fatigue, heart rate, and exhaustion) were monitored. Acute effects (circulating miRNAs, lactate) were determined using pre-and post-intervention measurements. RESULTS: All training interventions increased lactate concentration and heart rate (p < 0.001). The high-intensity intervention (HI) resulted in a higher lactate concentration than both lower-intensity training protocols with BFR (LI-BFR) and without (LI) (LI, p = 0.003; 30% LI-BFR, p = 0.008). The level of miR-143-3p was down-regulated by LI-BFR, and miR-139-5p, miR-143-3p, miR-195-5p, miR-197-3p, miR-30a-5p, and miR-10b-5p were up-regulated after HI. The lactate concentration and miR-143-3p expression showed a significant positive linear correlation (p = 0.009, r = 0.52). A partial correlation (intervention partialized) showed a systematic impact of the type of training (LI-BFR vs. HI) on the association (r = 0.35 remaining after partialization of training type). CONCLUSIONS: The strong effects of LI-BFR and HI on lactate- and arteriogenesis-associated miRNA-143-3p in young and healthy athletes are consistent with an important role of this particular miRNA in metabolic processes during (here) artificial blood flow restriction. BFR may be able to mimic the occlusion of a larger artery which leads to increased collateral flow, and it may therefore serve as an external stimulus of arteriogenesis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MicroRNAs / Treinamento Resistido / Ácidos Nucleicos Livres Tipo de estudo: Clinical_trials Limite: Adult / Female / Humans / Male Idioma: En Revista: Int J Mol Sci Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: MicroRNAs / Treinamento Resistido / Ácidos Nucleicos Livres Tipo de estudo: Clinical_trials Limite: Adult / Female / Humans / Male Idioma: En Revista: Int J Mol Sci Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Alemanha