Your browser doesn't support javascript.
loading
Characterization and repurposing of the endogenous Type I-F CRISPR-Cas system of Zymomonas mobilis for genome engineering.
Zheng, Yanli; Han, Jiamei; Wang, Baiyang; Hu, Xiaoyun; Li, Runxia; Shen, Wei; Ma, Xiangdong; Ma, Lixin; Yi, Li; Yang, Shihui; Peng, Wenfang.
Afiliação
  • Zheng Y; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei Univer
  • Han J; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei Univer
  • Wang B; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei Univer
  • Hu X; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei Univer
  • Li R; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei Univer
  • Shen W; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei Univer
  • Ma X; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei Univer
  • Ma L; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei Univer
  • Yi L; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei Univer
  • Yang S; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei Univer
  • Peng W; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei Univer
Nucleic Acids Res ; 47(21): 11461-11475, 2019 12 02.
Article em En | MEDLINE | ID: mdl-31647102
Application of CRISPR-based technologies in non-model microorganisms is currently very limited. Here, we reported efficient genome engineering of an important industrial microorganism, Zymomonas mobilis, by repurposing the endogenous Type I-F CRISPR-Cas system upon its functional characterization. This toolkit included a series of genome engineering plasmids, each carrying an artificial self-targeting CRISPR and a donor DNA for the recovery of recombinants. Through this toolkit, various genome engineering purposes were efficiently achieved, including knockout of ZMO0038 (100% efficiency), cas2/3 (100%), and a genomic fragment of >10 kb (50%), replacement of cas2/3 with mCherry gene (100%), in situ nucleotide substitution (100%) and His-tagging of ZMO0038 (100%), and multiplex gene deletion (18.75%) upon optimal donor size determination. Additionally, the Type I-F system was further applied for CRISPRi upon Cas2/3 depletion, which has been demonstrated to successfully silence the chromosomally integrated mCherry gene with its fluorescence intensity reduced by up to 88%. Moreover, we demonstrated that genome engineering efficiency could be improved under a restriction-modification (R-M) deficient background, suggesting the perturbance of genome editing by other co-existing DNA targeting modules such as the R-M system. This study might shed light on exploiting and improving CRISPR-Cas systems in other microorganisms for genome editing and metabolic engineering practices.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Zymomonas / Engenharia Metabólica / Sistemas CRISPR-Cas / Edição de Genes Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Zymomonas / Engenharia Metabólica / Sistemas CRISPR-Cas / Edição de Genes Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2019 Tipo de documento: Article