Your browser doesn't support javascript.
loading
Application of topic models to a compendium of ChIP-Seq datasets uncovers recurrent transcriptional regulatory modules.
Yang, Guodong; Ma, Aiqun; Qin, Zhaohui S; Chen, Li.
Afiliação
  • Yang G; Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
  • Ma A; Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China.
  • Qin ZS; Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China.
  • Chen L; Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
Bioinformatics ; 36(8): 2352-2358, 2020 04 15.
Article em En | MEDLINE | ID: mdl-31899481
MOTIVATION: The availability of thousands of genome-wide coupling chromatin immunoprecipitation (ChIP)-Seq datasets across hundreds of transcription factors (TFs) and cell lines provides an unprecedented opportunity to jointly analyze large-scale TF-binding in vivo, making possible the discovery of the potential interaction and cooperation among different TFs. The interacted and cooperated TFs can potentially form a transcriptional regulatory module (TRM) (e.g. co-binding TFs), which helps decipher the combinatorial regulatory mechanisms. RESULTS: We develop a computational method tfLDA to apply state-of-the-art topic models to multiple ChIP-Seq datasets to decipher the combinatorial binding events of multiple TFs. tfLDA is able to learn high-order combinatorial binding patterns of TFs from multiple ChIP-Seq profiles, interpret and visualize the combinatorial patterns. We apply the tfLDA to two cell lines with a rich collection of TFs and identify combinatorial binding patterns that show well-known TRMs and related TF co-binding events. AVAILABILITY AND IMPLEMENTATION: A software R package tfLDA is freely available at https://github.com/lichen-lab/tfLDA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Sequenciamento de Cromatina por Imunoprecipitação Tipo de estudo: Prognostic_studies Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Sequenciamento de Cromatina por Imunoprecipitação Tipo de estudo: Prognostic_studies Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos