Application of topic models to a compendium of ChIP-Seq datasets uncovers recurrent transcriptional regulatory modules.
Bioinformatics
; 36(8): 2352-2358, 2020 04 15.
Article
em En
| MEDLINE
| ID: mdl-31899481
MOTIVATION: The availability of thousands of genome-wide coupling chromatin immunoprecipitation (ChIP)-Seq datasets across hundreds of transcription factors (TFs) and cell lines provides an unprecedented opportunity to jointly analyze large-scale TF-binding in vivo, making possible the discovery of the potential interaction and cooperation among different TFs. The interacted and cooperated TFs can potentially form a transcriptional regulatory module (TRM) (e.g. co-binding TFs), which helps decipher the combinatorial regulatory mechanisms. RESULTS: We develop a computational method tfLDA to apply state-of-the-art topic models to multiple ChIP-Seq datasets to decipher the combinatorial binding events of multiple TFs. tfLDA is able to learn high-order combinatorial binding patterns of TFs from multiple ChIP-Seq profiles, interpret and visualize the combinatorial patterns. We apply the tfLDA to two cell lines with a rich collection of TFs and identify combinatorial binding patterns that show well-known TRMs and related TF co-binding events. AVAILABILITY AND IMPLEMENTATION: A software R package tfLDA is freely available at https://github.com/lichen-lab/tfLDA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fatores de Transcrição
/
Sequenciamento de Cromatina por Imunoprecipitação
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Bioinformatics
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
Estados Unidos