Your browser doesn't support javascript.
loading
Motor learning and COMT Val158met polymorphism: Analyses of oculomotor behavior and corticocortical communication.
Nogueira, Nathálya Gardênia de Holanda Marinho; Miranda, Débora Marques de; Albuquerque, Maicon Rodrigues; Ferreira, Bárbara de Paula; Batista, Marco Túlio Silva; Parma, Juliana Otoni; Apolinário-Souza, Tércio; Bicalho, Lucas Eduardo Antunes; Ugrinowitsch, Herbert; Lage, Guilherme Menezes.
Afiliação
  • Nogueira NGHM; School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. Electronic address: nogueiranathalya@gmail.com.
  • Miranda DM; Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Albuquerque MR; School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Ferreira BP; School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Batista MTS; School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Parma JO; School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Apolinário-Souza T; School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Bicalho LEA; School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Ugrinowitsch H; School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
  • Lage GM; School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Neurobiol Learn Mem ; 168: 107157, 2020 02.
Article em En | MEDLINE | ID: mdl-31927084
Differences in motor learning can be partially explained by differences in genotype. The catechol-O-methyltransferase (COMT) Val158Met polymorphism regulates the dopamine (DA) availability in the prefrontal cortex modulating motor learning and performance. Given the differences in tonic and phasic DA transmission, this study aimed to investigate whether the greater cognitive flexibility associated with the Val allele would favor the learning of movement parametrization, while the greater cognitive stability associated with the Met allele favors the acquisition of the movement pattern. Furthermore, we investigated if the genotypic characteristics impact visual scanning of information related to parametrization and to the movement pattern, and the level of cortical connectivity associated with motor planning and control. Performance and learning of a sequential motor task were compared among three genotypes (Val/Val, Val/Met, and Met/Met), as well as their oculomotor behavior and level of cortical coherence. The findings show that the cognitive flexibility promoted by the Val allele is associated with a better parametrization. The search for information through visual scanning was specific to each genotype. Also, a greater cortical connectivity associated with the Val allele was found. The combined study of behavioral, electrophysiological and molecular levels of analysis showed that the cognitive stability and flexibility associated with the COMT alleles, influence specific aspects of motor learning.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Catecol O-Metiltransferase / Movimentos Oculares / Aprendizagem / Atividade Motora Limite: Adult / Female / Humans / Male Idioma: En Revista: Neurobiol Learn Mem Assunto da revista: BIOLOGIA / CIENCIAS DO COMPORTAMENTO / NEUROLOGIA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Catecol O-Metiltransferase / Movimentos Oculares / Aprendizagem / Atividade Motora Limite: Adult / Female / Humans / Male Idioma: En Revista: Neurobiol Learn Mem Assunto da revista: BIOLOGIA / CIENCIAS DO COMPORTAMENTO / NEUROLOGIA Ano de publicação: 2020 Tipo de documento: Article